

KERALA TECHNOLOGICAL UNIVERSITY

M.Tech DEGREE COURSE

COMPUTER AIDED PROCESS DESIGN

(CHEMICAL ENGINEERING) Curricula, Scheme of Examinations and Syllabi (With effect from 2015 admissions)

SCHEME OF EXAMINATIONS

Semester I

Exam	Course No.	Name	L-T-P	Internal	End Sem	ester Exam	Credits
Slot				Marks	Marks	Duration	
						(hrs)	
А	09CH6111	Advanced	3-1-0	40	60	3	4
		Mathematics					
В	09CH6121	Chemical	3-1-0	40	60	3	4
		Engineering					
		Design I					
С	09CH6131	Chemical	3-1-0	40	60	3	4
		Engineering					
		Design II					
D	09CH6141	Advanced	2-1-0	40	60	3	3
		Chemical					
		Reaction					
		Engineering					
E		Electives	2-1-0	40	60	3	3
F	09CH6151	Research	1-1-0	100	0	0	2
		Methodology					
	09CH6161	Seminar	0-0-2	100	0	0	2
	09CH6171	Computer	0-0-2	100	0	0	1
		Aided					
		Design Lab					
Total			14-6-4	500	300		23

Elective I

09CH6115 Process Optimization
 09CH6125 Process Safety Engineering

3. 09CH6135 Advanced heat and mass transfer4. 09CH6145 Project engineering of process plants

Semester II

Exam	Course No.	Name	L-T-P	Internal	End Semester Exam		Credits
Slot				Marks	Marks	Duration	
						(hrs)	
А	09CH6112	Chemical	2-1-0	40	60	3	3
		Engineering					
		design III					
В	09CH6122	Chemical	3-1-0	40	60	3	4
		Engineering					
		Design IV					
С	09CH6132	Process	2-1-0	40	60	3	3
		Modeling and					
		Simulation					
D		Elective II	2-1-0	40	60	3	3
Е		Elective III	2-1-0	40	60	3	3
	09CH6162	Mini Project	0-0-4	100	0	0	2
	09CH6172	Lab	0-0-2	100	0	0	1
Total			11-5-6	400	300		19

Electives:II

- 1. 09CH6116 Design and Analysis of Experiments
- 2. 09CH6126 Environmental Engineering and Management
- 3. 09CH6136 Transport Phenomena
- 4. 09CH6146 Downstream Processing

Elective III

- 1. 09CH6166 Modern Methods of Instrumentation and Analysis
- 2. 09CH6176 Computational Fluid Dynamics
- 3. 09CH6186 Industrial Pollution Control
- 4. 09CH6196 Advanced Chemical Engineering Thermodynamics

Semester III

Exam	Course No.	Name	L-T-P	Internal	End Semester Exam		Credits
Slot				Marks	Marks	Duration	
						(hrs)	
Α		Elective IV	2-1-0	40	60	3	3
В		Elective V	2-1-0	40	60	3	3
	09CH7163	Seminar	0-0-4	100	0	0	2
	09CH7183	Project	0-0-12	50	0	0	6
		(Phase-I)					
Total			4-2-16	230	120		14

Elective IV

- 1. 09CH7117 Process Integration
- 2. 09CH7127 Non- Conventional Energy Sources
- 3. 09CH7137 Advanced Bioprocess Engineering
- 4. 09CH7147 Mathematical Methods in Chemical Engineering

Elective V

- 1. 09CH7167 Advanced Process Control
- 2. 09CH7177 Nanomaterials & Nanotechnology
- 3. 09CH7187 Separation Processes
- 4. 09CH7197 Polymer Composites

Semester IV

Exam	Course No.	Name	L-T-P	Internal	End Semester Exam		Credits
Slot				Marks	Marks	Duration	
						(nrs)	
	09CH7184	Project	0-0-21	100	0	0	12
		(Phase-2)					
Total	·	•	0-0-21	100			12

FIRST SEMESTER

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6111	ADVANCED MATHEMATICS	3-1-0-4	2015

Course Objectives

This course is intended to impart knowledge in numerical methods and statistics, which are powerful tools in engineering and also have wide areas of application.

Syllabus

Direct and iterative methods for solving systems of equations; interpolation techniques; numerical integration and differentiation; numerical solutions of ODE and PDE, probability and statistics.

Expected Outcome

Students will be able to identify and apply appropriate methods for dealing with numerical data obtained from experimental outcomes. The statistical tools will help them to analyze the results and to make better conclusions.

Text Books

- 1. Froberg C.E., Introduction to Numerical Analysis, Addison Wesley
- 2. Richard A. Johnson Probability and Statistics for engineers(PHI)

- 1. Gerald C.F., Applied Numerical Analysis, Addison Wesley
- 2. Hildebrand F.B., Introduction to Numerical Analysis, T.M.H.
- 3. James M.L., Smith C.M. & Wolford J.C., Applied Numerical Methods for Digital Computation, Harper & Row
- 4. Erwin Kreysig Advanced Engineering Mathematics (Wiley Eastern)
- 5. M.K. Venkitaraman Higher Mathematics for Engineering and Science.
- 6. Athanasios Papoulis, S Unnikrishna Pillai Probability, Random Variables and Stochastic Processes (McGraw Hill)
- 7. Jenson and Jeffreys Mathematical Methods in Chemical Engineering (Academic Press)

Course Plan					
Module	Contents	Hours	Semester exam		
			marks %		
Ι	Systems of linear equations – Jacobi, Gauss Seidel, SOR methods, Direct methods: Gauss Elimination, Matrix Inversion, Thomas algorithm for tridiagonal systems; Systems of nonlinear equations - successive approximation method, methods for improved convergence, Newton Method and its variants, continuation methods for multiple solutions.	13	25%		

II	Lagrange's interpolation polynomial - divided differences				
	Newton's divided difference interpolation polynomial -				
	error of interpolation - finite difference operators - Gregory	7	13%		
	- Newton forward and backward interpolations - Stirling's				
	interpolation formula - interpolation with a cubic spline				
	FIRST INTERNAL EXAM				
	Numerical differentiation - differential formulas in the case				
	of equally spaced points - numerical integration -	6	120/		
	trapezoidal and Simpson's rules - Gaussian integration -	6	12%		
	errors of integration formulas				
III	Numerical solution of ordinary differential equations- The				
	Taylor series method - Euler and modified Euler methods -				
	Runge-Kutta methods (2 nd order and 4 th order only) -				
	multistep methods - Milne's predictor - corrector formulas				
	- Adam-Bashforth & Adam-Moulton formulas - solution of	10			
	boundary value problems in ordinary differential equations	13	25%		
	- finite difference methods for solving two dimensional				
	Laplace's equation for a rectangular region - finite				
	difference method of solving heat equation and wave				
	equation with given initial and boundary conditions				
	SECOND INTERNAL EXAM				
IV	Probability and statistics - Probability distributions -				
	Inferences concerning means – tests of hypotheses –				
	Inferences concerning variances – Curve fitting – The	13	25%		
	method of least squares – Multiple regression - Correlation	10	20 /0		
	– Analysis of variance – Factorial experimentation-				
	Stochastic Processes				
END SEMESTER EXAM					

Course N	lo Course Name	L-T-P-	Year of					
		Credits	Introduction					
09CH612	21 CHEMICAL ENGINEERING DESIGN I	3-1-0-4	2015					
Course O	bjectives							
To study	in detail mechanical design of process equipments	and their acces	sories involved and to					
develop C	develop CAD modules for them.							
Syllabus	Syllabus							
Introduct	Introduction of codes for pressure vessel design, classification of pressure vessels as per codes.							
Design of	cylindrical and spherical shells under internal and ex	sternal pressure,	selection and design					
of closure	s, Design of shell for tall tower used at high wind an	d seismic conditi	ons. Design of lug,					
skirt and	saddle support including bearing plates and anchor be	olts. Selection of	gaskets, selection of					
standard t	langes, optimum selection of bolts for flanges, design	n of flanges. Des	ign of solid-liquid					
separators	S.	-	-					
Expected	Outcome							
• K	nowledge of IS codes							
• A	ble to use software tool for the design of internal pres	sure vessels						
• A	ble to design flanges							
• A	ble to design vessels under external pressure							
• A	ble to design tall vessels with heads and closures and	their supports						
• A	ble to design solid-liquid separator	then supports						
Text Boo	ks							
1. Brown	ell & Young. Process Equipment Design- Vessel Des	ign, Wiley Easte	ern.					
2. B.C B	hattacharya, Introduction to Chemical Equipment De	sign, CBS Publis	shers &					
Distributo	ors, New Delhi.							
3. B.C. B	hattacharyya and C.M. Narayanan, "Computer Aided	Design of Chen	nical Process					
Equipmen	t, Ist Edn., New Central Book Agency (P) Ltd., New	Delhi, 1992.						
4. M.V Jo	shi & Mahajan V.V., Process Equipment Design, 3rd	l Edn, Mac-Mila	n & Co India.					
Referenc	es							
1. IS Coo	les							
	Course Plan							
Module	Contents	Hou	rs Semester exam					
			marks %					
Ι	Introduction to codes. CAD Modules for design of							
	rectangular / cylindrical / spherical vessels under int	ernal 18	35%					
	pressure with dished / conical heads / closures. Desi	gn of 10	5570					
	Flanges.							
	FIRST INTERNAL EXA	M						
II	Design of Tall Vessels with heads / closures. Wind I	load /	30%					
	Seismic load. Design of Vessels under external pres	sure. 17	5070					
Thick – walled Vessels.								
r	SECOND INTERNAL EX	XAM						
III	Design of Supports for Short / Tall Vessels. Vertical	1						
	Supports (Skirt supports, Lug supports), Horizontal		250					
	Supports (Saddle Supports).	17	35%					
	Solid liquid separators: - Rotary Drum Filter. Grit							
	chamber, Trickling filter, Cyclone separator							
END SEMESTER EXAM								

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6131	CHEMICAL ENGINEERING DESIGN II	3-1-0-4	2015

- 1. To develop the ability of students to demonstrate knowledge in fundamentals of chemical engineering
- 2. To develop the ability of students to identify, formulate, analyze and solve common chemical engineering problems including physical and chemical processes or units
- 3. To develop the ability of students to design units or components for heat transfer to meet specific needs while observing technical, economical and safety constraints
- 4. To develop the ability of students to utilize experimental data, software, empirical equations and rules of thumb in the design of chemical engineering units

Syllabus

General design consideration, Introduction to simulation software in chemical engineering systems. Introduction to P&I diagram

Detailed process design of Heat exchangers- Double pipe, Shell and Tube and Finned Double Pipe Heat Exchangers, Shell and Tube Condensers

Expected Outcome

The students completing this course will be able to

- 1. Utilize physicochemical properties of pure and mixed fluids
- 2. Apply basic material and energy balances to analyze and solve problems for a unit, process or an entire flow sheet using sequential and/or process solutions by performing hand-calculations and/or using suitable computer simulation packages and software
- 3. Compute the implications and differences in flow regimes; quantify the effects of constrictions and pipe size on power requirements; utilize the properties of materials to select a suitable material for constructing pipes based on the flowing fluid properties
- 4. Utilize proper energy equations and codes & standards to calculate energy requirements for equipment, such as heat exchangers and condensers
- 5. Calculate heat transfer coefficients, performing steady state analysis related to different modes of heat transfer
- 6. Utilize empirical equations and rules of thumbs in the design of chemical engineering units

Text Books

1. D.Q. Kern, Process Heat Transfer, McGraw Hill, 1950

Reference Books

- 1. Coulson and Richardson, Chemical Engineering, Volume 6, Butterworth Heinemann, 1996.
- 2. Ernest E. Ludwig, "Applied Process Design for Chemical and Petrochemical Plants' Volume 1, 2, 3. Gulf Publishing; 4th Revised edition (13 March 2007)
- 3. Harry Silla, "Chemical Process Engineering Design and Economics", M Dekker
- 4. Douglas Erwin P E, "Industrial Chemical Process Design", McGraw hill.
- 5. Alexandre C Dimian, "Integrated design and Simulation of Processes", Elsevier

Perry's Chemical Engineering HandBook, Eighth Edition, McGrawHill.

Course Plan					
Module	Contents	Hours	Semester exam marks %		
I	General: General design consideration, Optimum design, Details of Property estimation and Material and Energy balance to special software for steady state and dynamic simulation of chemical engineering systems. Introduction to P&I diagram Design of Double Pipe Heat Exchangers: Hairpins in series, hairpins in series – parallel. Heat transfer Correlations, Pressure drop computations	17	30%		
	FIRST INTERNAL EXAM				
Π	Shell and Heat Exchangers. Fixed tubesheet / floating head / U – tube constructions. Multipass construction. Tubesheet layout (square, triangular, rotated square layouts). Heat transfer correlations for tubeside and shellside heat transfer coefficients (Colburn's and Donohue's correlations). Correction factors for baffle configuration baffle leakages, bundle bypass and unequal baffle spacing. Number of tubes in baffle window Pressure-drop computations. Correction factors for pressure drop Design of Finned Double Pipe Heat Exchangers: Longitudinal fins. Fin efficiency. Heat transfer and pressure drop correlations	17	35%		
	SECOND INTERNAL EXAM		-		
III	Condensers (Shell and Tube): Vertical condensers, horizontal condensers. Heat transfer and pressure drop correlations for film condensation on vertical and horizontal tube bundles. Condenser – sub coolers. Split flow arrangement	18	35%		
END SEMESTER EXAM					

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6141	ADVANCED CHEMICAL REACTION ENGINEERING	2-1-0-3	2015

The students completing this course will develop

- 1. Ability to determine the kinetics of homogeneous and heterogeneous reactions.
- 2. Ability to develop models for ideal and non-ideal reactors.
- 3. Skill to choose a reactor from many available alternatives.
- 4. Skill to design of reactors for a specific application.

Syllabus

Ideal Reactors – Models of non-ideal flow – Solid catalyzed reactions – Non catalytic – Fluid particle reactions.

Expected Outcomes

The students will be able to

- 1. Analyze the chemical reactors and reaction systems.
- 2. Describe the important aspects of homogeneous and heterogeneous reactions.
- 3. Apply the concepts to resolve the problems in solid catalyzed reaction
- 4. Design of chemical reactors for homogeneous and heterogeneous reactions by applying the concepts of non-isothermal and non-ideal situations.

Text Books

- 1. Levenspiel. O, Chemical Reaction Engineering, 3rd John Wiley & sons.
- 2. Smith, J. M., Chemical Kinetics, McGraw Hill.

- 1. Fogler, S. H., Elements of Chemical Reaction Engineering, Prentice Hall.
- 2. Carberry. J.J, Chemical and Catalytic Reaction Engineering, McGraw Hill.
- 3. Walas, S. M., Chemical Reaction Engineering Handbook of Solved Problems, Oxford Sciences.
- 4. Davis, M.E. and Davis, R.J, Fundamentals of Chemical Reaction Engineering, McGraw Hill.

Course Plan					
Module	Contents	Hours	Semester exam		
			marks %		
Ι	Ideal reactors	2			
	Kinetics of single reactions in Ideal reactors	2			
	Design of ideal reactors for single reactions	3	25%		
	Single and multiple reactor systems	2			
II		2			
	Basics of non-ideal flow,				
	Models of non-ideal flow- Compartment models, axial	3	13%		
	dispersion model, tanks-in-series model				
	FIRST INTERNAL EXAM				
	Convection model for laminar flow	2			
	Earliness of mixing, segregation and RTD	3	12%		
III	The kinetics of solid catalyzed reactions	2			

	Pore diffusion resistance combined with surface kinetics, effectiveness factor,	3	
	Performance equation for reactors containing porous catalyst particles	2	25%
	Packed bed catalytic reactors, fluidized reactors.	3	
	SECOND INTERNAL EXAM		
IV			
	Non- catalytic - Fluid –particle reactions- kinetics.	5	
	Non- catalytic - Fluid –particle- reactor design.	5	25%
	END SEMESTER EXAM		•

Cours	o No	Course Name	I_T_P_ Credits	Vear of
Cours		Course Manie	L-1-1 - Creans	Introduction
09CH	6115	PROCESS OPTIMIZATION	2-1-0-3	2015
Course (Objectiv	res		
The stude	ents com	pleting this course		
1. W	/ill deve	lop in depth knowledge of different princip	ples and methods of	f optimization.
2. W	/ill deve	lop a general approach for establishing the	conditions for equ	ilibrium and stability
for	complex	x systems.		
3. C	an anal	yze & solve practical chemical engineering	g optimization prob	lems.
4. (Can app	ly the knowledge of optimization to design	problems.	
Syllabus				
Linear A	lgebra -	Introduction to vector spaces and matrix a	algebra. Geometric	concepts. Formulation
of Optim	ization	Problems in Chemical Engineering. Unc	constrained optim	ization: necessary and
sufficience	cy con	dition for local optimum, univariate	e optimization n	nethods, Multivariate
Unconstr	ained C	Optimization methods , Multivariate Cor	strained Optimiza	tion methods, Duality
theory for	r nonline	ear programming.		
T				
	1 Outco	me	mization	
1.0 $2 E_{0}$	ormulate	an optimization problem	IIIIZatioII.	
2. T 3 A	nalvze d	lifferent levels of optimization problems ()	univariate & multiv	ariate unconstrained
&	constra	ined).		
4. A	pply the	proper optimization methods to actual Ch	emical Engineering	based problems.
	11 5		6 6	, I
Text Boo	oks			
1. T. F.	Edgar a	and DM Himmelblau, Optimization of chem	nical processes	~
2. M.C.	Joshi a	nd K. M. Moudgalya, <i>Optimization: Theor</i>	y and Practice, Na	rosa Publishing.
3. 5.5. Defense	Rao, O_{I}	ptimization Theory and Applications		
	Noceda	S Land S. I. Wright Numerical Ontimization	A Springer Verlag	
1. J.	ilbert St	rang Linear Algebra	i, springer verlag.	
2. 0	noen si	iung, Lineur mgeoru		
		Course Plan		
Module		Contents	Hou	rs Semester exam
				marks %
Ι	Linear	Algebra . Formulation of Optimization Pr	roblems in 10	
	Chemi	cal Engineering. Unconstrained opt	timization:	
	necess	ary and sufficiency condition for local	optimum,	250/
	Golder	are optimization methods - bracketing to	ecnniques,	23%
	Golder	i section and cubic interpolation.		
II	Multiv	ariate Unconstrained Optimization -, Neld	er-Head's 4	1.20/

necessary and sufficiency condition for local optimum,		
univariate optimization methods - bracketing techniques,		25%
Golden section and cubic interpolation		
Solden section and easie interpolation.		
	4	
Multivariate Unconstrained Optimization -, Nelder-Head's	4	12%
method, Powell's method		12/0
FIRST INTERNAL EXAM		
	5	
Steepest descent Conjugate gradient Newton and quasi-		13%
Negete a weath a le		1370
Newton methods		
12		

_

III	Multivariate Constrained Optimization: Karush-Kuhn-		
	Tucker conditions for local optimality, Linear	10	25%
	Programming: Simplex, Duality		
SECOND INTERNAL EXAM			
IV	Duality theory for nonlinear programming- Lagrangean		
	Interpolation method- Quadratic programming- Active set	10	25%
	method- Quadratic penalty method		
	END SEMESTER EXAM		

Course N	o Course Name	L-T-P-		Year of			
		Credits		Introduction			
09CH612	5 PROCESS SAFETY ENGINEERING	2-1-0-3		2015			
Course O	bjectives:						
To	study the principles and practice of process safety.						
Syllabus:	Chamicala Identification of Harand Maion Industrie	l Horondo To	- 1	ue for Horond			
Hazards o	Consequence Analysis and Quantitative Rick Assess	al Hazards, Teo	cnniq t Saf	ue for Hazard			
Evaluation	I, Consequence Analysis and Quantitative Risk Assess	sment, inneren	t Sale	ety and Process			
Fynected	Outcome:						
1 To	describe the needs of safety						
2 In	independence includes of safety						
3. Ar	alvze the chemical hazards in plants.						
4. Ar	alyze the Process Reliability and Human Errors.						
Text Boo	ks:						
1. Da	niel Crowl- "Chemical Process Safety" 3rd edition, Pe	earson Publicat	tions				
2. V.	C. Marshal- "Major Chemical Hazards" Ellis Harwoo	od Ltd, Chiche	ser, U	JK 1987			
3. Bh	askara Rao- "Safety in Process Plant Industries" Khar	nna Publication	ıs.				
Reference	e Books:						
1. Fra	ank P. Lees- "Loss Prevention in Process Industries",	Vol.1,2&3,Sec	ond l	Edn, Butterworth-			
Не	einemann.1996	~ .	~				
2. Gu	idelines for Hazard Evaluation Procedure.	Centre for	C	hemical Process			
Sa	tety.AICHE,1992	1 77 .					
3. Ka	Iph King, Safety in the Process Industries, Butterworth	h-Heinemann	1				
4. W	ens. G. L, Salety in Process Plant Design, George God	iwin Ltd, Lond	ion				
	Course Plan						
Module	Contents	Hou	rs	Semester exam			
				marks %			
T	Special Hazards of Chemicals Toxicity Flamma	bility 1					
L	Explosions	ionity, 1					
	Sources of ignition Ionising Radiation Pressure	e and					
	Temperature deviation. Runaway reactions.	2					
	Identification of Hazard - Inventory analysis, Dow Fin	re and 2					
	Explosion Index.			25%			
	Mond Fire, Explosion and Toxicity Index. 2						
	Major Industrial Hazards - Reasons, Flixborough and 3						
	Bhopal disasters.						
Π	Technique for Hazard Evaluation - Hazard and Opera	bility, 2					
	study 1204						
	Preliminary Hazard Analysis 2						
	What if Analysis	1					
	FIRST INTERNAL EXAM						
	Fault Tree Analysis, Event Tree Analysis			13%			
	Failure Modes, Effects Analysis, Examples	2		- • •			

III	Consequence Analysis and Quantitative Risk Assessment-	1	
	Consequence of Chemical accidents.		
	Models for Fire, Explosion and Toxic gas dispersion.	2	
	Individual and Societal Risk		
	F-N curves, Probit function.	1	25 %
	Elements of Emergency Planning	1	
	Inherent Safety and Process Intensification-The concept of	2	
	Inherent Safety, Tools for Inherent Process Safety.		
	Inherent Safety Indices.	2	
	The concept of Process Intensification	1	
	SECOND INTERNAL EXAM		
IV	Process Reliability and Human Error Analysis-Basic	3	
	Principles of Reliability engineering.		
	Ways of improving process Reliability.	2	25%
	Reasons of Human Error	2	
	Tehnique for assessing Human error	3	
	END SEMESTER EXAM		

Course No	Course Name	L-T-P- Credits	Year of
			Introduction
09CH6135	ADVANCED HEAT AND MASS	2-1-0-3	2015
	TRANSFER		

The students completing this course will develop

- 1. Deeper understanding on modes of heat transfer and their treatment in multi-dimensions.
- 2. The ability to analyze various engineering problems involving conduction, convection and radiation heat transfer
- 3. The ability to develop and solve boundary layer equations for various cases of heat and mass transfer
- 4. Knowledge to analyze and solve mass transfer cases involving multi-component diffusion
- 5. Understanding of interphase mass transport involving multi component systems
- 6. Apply the knowledge of heat and mass transfer to design problems

Syllabus

Review of conduction, convection, and thermal radiation fundamentals, steady state one- and twodimensional conduction, transient conduction for various configurations and fins. Convection heat transfer. Molecular diffusion. Interphase transport in multi component systems.

Expected Outcome

Students will develop deeper understanding on advanced concepts of heat and mass transfer, analytical and problem solving skills on engineering problems involving the same and skill to apply the knowledge acquired in real design problems

Text Books

- 1. Bird et al., *Transport phenomena*, John Wiley & Sons.
- 2. Wetty J.R et al., Fundamentals of momentum, heat and mass transfer, John Wiley & Sons

- 1. Wetty J.R., Engineering heat transfer, John Wiley & Sons.
- 2. Foust A.S et al., *Principles of unit operations*, John Wiley & Sons.
- 3. Giedt, Principles of engineering heat transfer, Van Nostrand Co.

	Course Plan		
Module	Contents	Hours	Semester exam marks %
Ι	Review of conduction, convection, and thermal radiation fundamentals, steady state one- and two- dimensional conduction, transient conduction for various configurations and fins.	10	25%
II	Convection heat transfer – Heat transfer in laminar and turbulent flows, hydrodynamic and thermal boundary layer.	5	13%
	FIRST INTERNAL EXAM		
	Integral analysis of hydro dynamic boundary layer. Exact analysis of thermal boundary layer. Heat transfer to non-	5	12%

	Newtonian fluids.		
Ш	Molecular diffusion – Steady state molecular diffusion, equations of change for multi component systems, use of equations of change in diffusion problems. Simultaneous diffusion and chemical reaction. Analogy between heat, mass and momentum transfer.	10	25%
	SECOND INTERNAL EXAM		
IV	Interphase transport in multi component systems – Binary mass transfer coefficient in one phase, mass transfer coefficients for low and high mass transfer rates. Film theory, penetration theory and boundary layer theory of mass transfer.	9	25%
	END SEMESTER EXAM	I	

Course	No	Course Name	L-T-P- Credita	Year of
	45	DDA JECT ENCINEEDING OF		
090101	43	PROJECT ENGINEERING OF PROCESS PLANTS	2-1-0-5	2015
		I ROCESS I LANIS		
Course Ol	bjectiv	ves		
To imp	oart the	e basic concepts of project management and de	sign aspects of	process plants
Syllabus	• .		1 . 1	1 . 1 .
Scope of pr	oject e	ingineering - the role of project engineer - R & D -	plant location an	d site selection - process
engineering	; -Plan	ning and scheduling of projects - procurement o	perations - office	ce procedures - project
financing -	statu	tory sanctions- Details of engineering design a	nd equipment s	selection I - Details of
engineering	desigi	n and equipment selection II - thermal insulation and	d buildings - safe	ety in plant design - plant
construction	ns, star	t up and commissioning		
Expected	Outco	ome		
1. The stu	ident v	will acquire the knowledge to evaluate of design	n aspects & des	ign options of process
plant.				
2. The stu	dent w	vill be able to evaluate the technical, economic,	and financial fe	easibility of a
process	plant			
Reference	Book	8		
Rase &	Barro	w, Project Engineering of Process Plants, John Wile	ev	
Peter S	Max	& Timmerhaus, Plant design and economics for	y or chemical eng	ineers
Mc Gra	aw Hil	(2002).	i enernieur eng	
Srinath	n L. S.	"PERT AND CPM." affiliated east press pvt. 1	Ltd., new vork	(1973)
Perry J	. H.,"(Chemical engineering handbook" 7 th ed. Mc Gr	aw Hill (1997)	
Jellen I	F. C., '	"Cost and optimization in engineering". Mc Gra	aw Hill (1983).	
Freder	ick B.	Plummer, Project Engineering, BH		
Ernest	E. Luo	dwig, Applied project engineering and manager	ment, Gulf Pub.	. Co., (1988)
	1	Course Plan	ТТ	
Module		Contents	Hour	rs Semester exam
Т	Scon	e of project engineering - the role of project engine	eer - R	marks 70
I	& D	- TEER - plant location and site selection - preli	minary	
	data	for construction projects process angineering	flow 9	25%
	diagr	ams plot plans engineering design and drafting	- 110 w	
	Dlopp	and scheduling of projects ber chart and n	otwork	
11	toohn	ing and scheduling of projects - bar chart and in	4	10%
	techn			
		FIRST INTERNAL EXAM	- 4 -	
	proc	urement operations - office procedures - contract	5	15%
тт	and C	contractors - project financing - statutory sanctic	on I	
	decia	ins of engineering design and equipment selections are builded was also have been and a selection of the sel	on I -	
	nroce	si calculations excluded - vessels - lieat excluding	^{gers} 10	25%
	moto	rs and turbines - other process equipment		
	moto	SECOND INTERNAL EXA	AM	1

IV	Details of engineering design and equipment selection II - design calculations excluded - piping design - thermal insulation and buildings - safety in plant design - plant	10	25%
	constructions, start up and commissioning		

Course N	Irse No Course Name L-T-P- Year of Credits Introduction						
09CH615	I6151RESEARCH METHODOLOGY1-1-0-22015						
Course O Intr rese	Course Objectives Introduce the students to the field of research and give an idea on how to conceptualize their research design and how to publish their results in the knowledge database.						
Syllabus Introducti mathemat	on to Research methodology, Conceptualizing a resolution in research, Research	earch design, App writing and publi	lication of shing				
Expected	Outcome						
The stude	nt will be able to:						
1. Fo	rmulate the research problem						
2. De	velop a research plan						
3. Co	nduct the research						
4. Ar	alyze and interpret the data by various techniques						
5. Pu	blish their results						
Text Boo	ζS						
1. Ra	njit Kumar, "Research Methodology: A Step-by-ste	p Guide for Begin	nners", Pearson,				
Se 2. Ko	cond Edition thari, C.R, "Research Methodology : Methods and "	Techniques", Nev	v age International				
pu	publishers						
Reference 1. W 20 2. 2. J.V 3. Sc 4. W	e Books ayne Goddard and Stuart Melville, "Research Metho 01, Juta& Co Ltd. V Bames, Statistical Analysis for Engineers and Sci hank Fr., Theories of Engineering Experiments, Tat illktnsion K. L, Bhandarkar P. L, Formulation of Hy	odology: An Intro entists, McGraw I a Mc Graw Hill P ypothesis, Himala	duction", 2 nd Edition, Hill, N.York ublication. ya Publication.				
	Course Plan						
Module	Contents	Hour	s Semester exam marks %				
Ι	Research Methodology: An introduction						
	Meaning of research,Objectives of research,Motiva research,Applications of research,Definition of research,Characteristics of research,Types of resear Steps in research process Formulating a research problem: Peviewing the life	tion in 7 ch,	25%				

	Formulating a research problem, Identifying variables, Constructing hypothesis				
Π	Conceptualizing a Research Design:- Definition of a research design, Need for research design, Functions of research design, Features of a good design Methods of Data Collection:- Collection of primary data,Observation method, Interview method, Collection of data through questionnaires, Collection of data through schedules.	7	25%		
FIRST INTERNAL EXAM					
ш	Mathematical modelling and simulation:- Concepts of modelling, Classification of mathematical models, Modelling with:- Ordinary differential equations, Difference equations, Partial differential equations, Graphs, Simulation, Process of formulation of model based on simulation.	6	25%		
IV	Research writing in general:- Referencing, Writing a bibliography, Developing an outline, Writing about a variable, Interpretation of data and paper writing, Layout of a research paper, Journals in Chemical Engineering, Impact factor of Journals, When and where to publish? Ethical issues related to publishing, Plagiarism and Self- Plagiarism Software for paper formatting like LaTeX/ MS Office	6	25%		
SECOND INTERNAL EXAM					

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6161	SEMINAR	0-0-2-2	2015

To assess the debating capability of the student to present a technical topic. Also to impart training to a student to face audience and present his/her ideas and thus creating self esteem and courage that are essential for an engineer.

Individual students are required to choose a topic of their interest from process design/design related topics preferably from outside the M.Tech syllabus and give a seminar on that topic about 45 minutes. A committee consisting of at least three faculty members shall assess the presentation of the seminar and award marks to the students based on merits of topic of presentation. Each student shall submit two copies of a write up of the seminar topic. One copy shall be returned to the student after duly certifying it by the chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation.

Internal Continuous Assessment (Maximum Marks-100)

Relevance + Literature	: 10 marks
Concept / Knowledge in the topic	: 20 marks
Presentation	: 40 marks
Report	: 30 marks
Total marks	: 100 marks

Expected Outcome

At the end of the course the student will be able to

- 1. Communicate with group of people on different topics
- 2. Prepare a Seminar report that includes consolidated information on a topic

Course No	Course Name	L-T-P- Crodits	Year of				
09CH6171	COMPUTER AIDED DESIGN LAB	0-0-2-1	2015				
a ol:							
Course Objectives							
systems.							
Optimal desig	gn of the following equipments using softwares.						
1. Shell and 7	Tube heat exchangers , Plate type Heat Exchange	r& Condensers.					
2. Double Pip	be Heat Exchangers, Finned Heat Exchangers.						
3.Condensers	(Shell and Tube): Vertical condensers, horiz	ontal condensers					
4. Reboilers a	& Vaporisers: Kettle type, Vertical Thermosypho	on type.					
Internal Cor	ntinuous Assessment (Maximum Marks-100)						
Regularity	: 30 marks						
Record	: 20 marks						
Tests, Viva	: 50 marks						
Total marks	: 100 marks						
Expected Ou	itcome						
At the end of the course the student will be able to							
 Solve complex chemical engineering problems by applying suitable numerical methods Design the process equipment using design software 							
2. Design die process equipment using design software							

SECOND SEMESTER

Course No	o Course Name	L-T-P- Credits		Year of Introduction	
09CH6112	2 CHEMICAL ENGINEERING DESIGN III	2-1-0-3		2015	
Course Ob	iectives				
To stud	y in detail design of heat and mass transfer equip	pments and p	hase	separation	
equipments	which are very integral in industry	1		1	
Syllabus					
Reboilers &	v Vaporisers. Design of Multiple Effect Evapora	tors (MEE)	.Mas	ss and Heat	
Balances in	MEE. BPR chart. Enthalpy — Concentration D	iagrams. Sol	ution	for n effects	
using Gaus	s — Seidel / Crout' s method. Optimum number	of effects. D	esign	n of dryers-	
Cooling To	wers				
Expected (Dutcome				
1. The cour	se will provides basic concepts, industrial practic	ces and theor	retica	l relationships	
useful for t	he design of process equipment				
2. The stud	ents will able to a pply the principles of heat & r	nass transfer	to er	ngineering	
situations a	nd the design of equipments involving both heat	& mass tran	sfer.		
Reference	Books				
1. Narayana	an, C.M. and B.C.Bhattacharya, Unit Operations	and Unit Pro	cesse	es,	
Volume	—I,CBS Publishers, New Delhi				
2. Richards	on, J.M., Coulson J .F. and Sinnot R. K.: Chemie	cal Engineeri	ing V	'ol . 6.	
3. Harry Si	lla, "Chemical Process Engineering Design and I	Economics",	M D	ekker	
4. Douglas	Erwin P E, "Industrial Chemical Process Design"	', McGraw H	Hill.		
5. Kunni D	, Levenspial D.: Fluidization Engineering. Wile	у.			
6. Perry's C	Chemical Engineering HandBook, McGraw Hill.				
7. Nauman	Bruce; Handbook of chemical reactor design, or	ptimisation a	nd sc	ale up, McGraw	
Hi11					
	Course Plan				
Module	Contents	Hou	rs	Semester exam marks %	
Ι	Reboilers & Vaporisers: Kettle type, Vertical				
	Thermosyphon type	10)	30%	
	FIRST INTERNAL EXA	M			
II	Design of Multiple Effect Evaporators (MEE)				
	Classification of Evaporators. Types of feeding	in			
Multiple Effect Evaporators (MEE). Mass and					
	Heat Balances in MEE. BPR chart. Enthalpy —	- 15		35%	
	Concentration Diagrams. Solution for n effects				
	using Gauss — Seidel / Crout' s method. Optim	num			
	number of effects.				
	SECOND INTERNAL EXAM				

Ш	Design of dryers: Rotary dryer, Tray dryer. Cooling Towers : Water cooling by air. Psychrometric equations. Minimum (L/G) ratio. HTU — NTU concept.	14	35%
END SEMESTER EXAM			

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6122	CHEMICAL ENGINEERING DESIGN IV	3-1-0-4	2015

- 1. To develop the ability of students to demonstrate knowledge in fundamentals of chemical engineering
- 2. To develop the ability of students to demonstrate knowledge of physical processes encountered in chemical engineering practice including the various separation process
- 3. To develop the ability of students to identify, formulate, analyze and solve common chemical engineering problems including physical and chemical processes or units
- 4. To develop the ability of students to design units or components for mass transfer to meet specific needs while observing technical, economical and safety constraints
- 5. To develop the ability of students to utilize experimental data, software, empirical equations and rules of thumb in the design of chemical engineering units

Syllabus

Detailed process design of equipment for Absorption, Distillation, Multi-component Distillation, Liquid-Liquid extraction

Expected Outcome

The students completing this course will be able to

- 1. Utilize physicochemical properties of pure and mixed fluids
- 2. Apply basic material and energy balances to analyze and solve problems for a unit, process or an entire flow sheet using sequential and/or process solutions by performing hand-calculations and/or using suitable computer simulation packages and software
- 3. Apply the fundamentals of stage operations using phase diagrams and phase equilibrium, and describe the main factors affecting them
- 4. Analyze stage-wise and continuous gas-liquid/ liquid-liquid separation processes by applying graphical and analytical methods for absorbers, distillation columns and extraction columns
- 5. Apply the basics of mass transfer operations in the design of units such as absorption, distillation columns and liquid-liquid extraction units.
- 6. Calculate mass transfer coefficients, performing steady state analysis
- 7. Utilize proper codes & standards, empirical equations and rules of thumbs in the design of chemical engineering units

Text Books

- 1. Robert E. Treybal, Mass-Transfer Operations, Third Edition, Mc-GrawHill, 1981
- 2 Christie John Geankoplis, Transport Processes and Separation Process Principles, 4th Edition

- 1. Coulson and Richardson, Chemical Engineering, Volume 6, Butterworth Heinemann, 1996.
- 2. Ernest E. Ludwig, "Applied Process Design for Chemical and Petrochemical Plants' Volume 1, 2, 3. Gulf Publishing; 4th Revised edition (13 March 2007)
- 3. Harry Silla, "Chemical Process Engineering Design and Economics", M Dekker
- 4. Douglas Erwin P E, "Industrial Chemical Process Design", McGraw hill
- 5. Alexandre C Dimian, "Integrated design and Simulation of Processes", Elsevier
- 6. Perry's Chemical Engineering HandBook, Eighth Edition, Mc-GrawHill

Course plan			
Module	Contents	Hours	Semester exam marks %
Ι	Design of Packed Bed Absorption Column: Flooding and	1.6	2004
	loading. Flooding Velocity Computation. Mass transfer correlations. HTU — NTU concept	16	30%
	FIRST INTERNAL EXAM		
Π	Sieve Plate (Absorption / Distillation columns): Flooding Velocity Computation. Tray spacing. Active plate area. Minimum weeping velocity. Correction for entrainment. Plate stability. Liquid gradient across the tray. Total pressure drop through perforations, through aerated mass. Downcomer hydraulics. Residence time in downcomer	18	35%
	SECOND INTERNAL EXAM		
III	Computer Aided Design and Analysis of Multicomponent Distillation processes by FUG (Fenske — Underwood — Gilliland) Method. Liquid - liquid extraction columns, packed columns	18	35%
	END SEMESTER EXAM		

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6132	PROCESS MODELING AND SIMULATION	2-1-0-3	2015

- 1. To develop the ability in students to demonstrate the knowledge of physical and chemical processes encountered in chemical engineering practice
- 2. To make the students to develop the mathematical models for chemical engineering systems and solutions for those models

Syllabus

Introduction-Models, Classification and Model building. Modeling and Simulation of Lumped parameter models (steady-state and unsteady-state), Distributed parameter models (steady-state and unsteady state)

Expected Outcome

The students completing this course will be able to

- 1. Define, List and Explain the classification of mathematical models
- 2. List and Explain the steps involved in mathematical modeling
- 3. Describe the fundamental, the physical meaning and the equations governing the processes
- 4. Formulate and Validate models
- 5. Demonstrate the model solving ability for various processes/unit operations

Text Books

- 1. W.L. Luyben, "Process Modelling, Simulation and Control for Chemical Engineers", 2nd Edn., McGraw Hill Book Co., New York, 1990
- 2. Biquette W.B., Process Dynamics Modeling Analysis and Simulation, Prentice Hall of India

Reference Books

- 1. R.E.Franks, Modeling and Simulation in Chemical Engineering, John Wiley, 1972
- K. M. Hangos and I. T. Cameron, "Process Modelling and Model Analysis", Academic Press, 2001
- 3. W.F.Ramirez, Computational Methods In Process Simulation, Butterworth, 1989
- 3. John Ingham et.al., Chemical Engineering Dynamics Modelling with PC Simulation, VCH Publishers
- 4. Amiya K.Jana, Computer Process Modelling and Computer Simulation, Prentice Hall of India

Mark E. Davis, "Numerical Methods and Modelling for Chemical Engineers", John Wiley & Sons, 1984

Course Plan						
Module	Contents	Hours	Semester exam marks %			
Ι	Definitions of Modelling, Simulation-classification of modelling techniques-uses and applications of mathematical modelling-basic modelling principles- fundamental laws of chemical engineering: energy equations, continuity equation, equation of motion, transport equations, equations of state, equilibrium states and chemical kinetics-sufficiency and redundancy- boundary conditions Solution methods for algebraic equations: direct and indirect methods- Solution methods for initial value and boundary value problems: Euler's method, R-K method.	9	25%			
II	Mathematical models with simulation strategies for chemical engineering systems: continuous flow tanks-open and enclosed vessel- mixing vessel	4	10%			
	Mixing with reaction - reversible reaction- steam jacketed vessel-isothermal constant and variable hold up CSTR in series- batch reactor - semi batch reactor.	6	15%			
III	Mathematical models with simulation strategies for Boiling of single component liquid- open and closed vessel - continuous flow boiling - multicomponent boiling system - batch distillation-condensation- Multicomponent flash drum- ideal binary distillation column – multicomponent distillation column- Liquid extraction	11	25%			
	SECOND INTERNAL EXAM					
IV	Solution strategies for distributed parameter models- shooting method, finite difference methods. Mathematical models with simulation strategies for Distributed system: Double pipe liquid-liquid heat exchanger- tubular reactor with axial dispersion	9	25%			
	END SEMESTER EXAM					

Course No Course Name L-T-P-		Year of				
000110	11/		Credits	Introduction		
09CH6	116	DESIGN AND ANALYSIS OF EXPERIMENTS	2-1-0-3	2015		
Course (Objecti	lves				
This subj	ect pro	vides students with the knowledge to				
1. U	se stati	istics in experimentation;				
2. U	ndersta rocess (and the important role of experimentation i development, and process improvement;	n new product	design, manufacturing		
3. A	nalyze	the results from such investigations to obtain	conclusions;			
4. B	ecome obustne	familiar methodologies that can be used in co	njunction with ex	perimental designs for		
Syllabus						
Introduct	ion to t	the role of experimental design - Basic statistic	cal concepts - Hy	pothesis testing -		
Analysis methodol	of vari	ance (ANOVA) - Design of experiments - Reg	gression analysis	- Response surface		
Expected	l Oute	omes				
The stude	ents wi	ll be able to				
1. D 2. U de 3. In ar 4. Le te 5. U Text Boo 1. "I N	 Describe how to design experiments, carry them out, and analyze the data they yield. Understand the process of designing an experiment including factorial and fractional factorial designs. Investigate the logic of hypothesis testing, including analysis of variance and the detailed analysis of experimental data. Learn the technique of regression analysis, and how it compares and contrasts with other techniques studied in the course. Understand the role of response surface methodology and its basic underpinnings. Text Books "Design and analysis of experiments" by D.C. Montgomery, 8th edition John Wiley and sons, 					
2. "A 5t	Applied th edition	l Statistics and Probability for Engineers", b on John Wiley and sons, New York.	y D.C. Montgon	nery and G.C. Runger,		
 Reference Books "Design and analysis of experiments" by Klaus Hinkelmann, 2ndEdn. Wiley, New York. "Introduction to Probability models" by Sheldon M. Ross, 10thEdn, Elsevier, USA. "Response surface methodology" byR. H. Myers, D.C. Montgomery, C. M. Anderson-Cook, 2nd.Edn, John Wiley and sons, New York. 						
		Course Plan				
Module	Cont	ents	Hours	Semester exam marks %		
Ι	Intro	luction to the role of experimental design	2	25%		
	Basic	statistical concepts, sampling and sampling	3			
	distri	bution				
	Нуро	thesis Testing	2			

	Inference about the difference in means and variances	2	
II	Analysis of variance (ANOVA) -one-way classification ANOVA	2	120/
	Analysis of fixed effects model, Estimation of model parameters	3	1370
	FIRST INTERNAL EXAM		
	Comparison among treatment means	2	
	Random effects model; randomized designs and paired comparison designs, the randomized complete block design.	3	12%
III	Factorial design of experiments; two-factor factorial design	3	
	Analysis of fixed effects model	2	
	General factorial design	2	25%
	Analysis of 2k and 3k factorial designs	3	
-	SECOND INTERNAL EXAM	1 I	
IV	Regression analysis— Simple and multiple linear regression	3	
	Hypothesis testing in multiple regression	2	
	Response surface methodology-the method of steepness ascent	3	25%
	Response surface designs for first-order and second-order models.	2	
	END SEMESTER EXAM		

Course No	Course Name	L-T-P-	Year of
0000000	ENVIRONMENTAL ENCINEERING	2-1-0-3	
070110120	AND MANAGEMENT	2-1-0-5	2015
Course Objectiv	ves		L
The students cor	npleting this course		
1. Will be a	ble to understand and characterize water & ai	r pollutions and i	respective sources.
2. Enable for	or management, design of systems for solid, li	quid and air poll	ution control
<u>a n n</u>			
Syllabus	town of Comment of comments of Class 4.4.4		7
Waste water trea	tment, Concept of common effluent treatmen	t plant (CETP). 2	Lero discharge
systems, Air pol	lution, global effect of air pollutants, factors al	flecting dispersio	on of air pollutants,
dispersion mode	ling. Air pollution control of stationary source	es, Noise polluti	on, community noise
sources, Pollutio	n control in industries, Solid waste and hazard	dous waste mana	gement General
guidelines of env	vironmental impact assessment (EIA), enviror	imental managen	nent systems
(EMS) and envir	onmental audit.		
Europeted Outer			
1. Understa	nd different types of Air water pollutions and	l respective source	ces
2 Analyze	the environmental aspects of pollution		
3 Character	rize different sources of waste		
4. Manages	solid & hazardous wastes		
5 Model ar	ad design water treatment system for any efflu	ent treatment pla	ant
5. 100001 di	a accient where treatment system for any entit	en acament pi	
Text Books			
1. Metcalf ar	d Eddy, Waste water engineering, treatment,	disposal, reuse,	Tata-McGraw Hill.
2. Mahajan.S	.P, Pollution control in process industries, Tat	a-McGraw Hill.	
3. Rao.Č.S, E	nvironmental pollution control engineering, N	New age internati	ional (P) ltd.
Reference Book	is is	-	
1 Rao M N	and H.V.N. Rao. Air pollution. Tata McGraw	Hill	

1. Rao.M.N and H.V.N. Rao, Air pollution, Tata McGraw Hill 2. H.S Peavey et al., Environmental engineering, McGraw Hill

Course Plan				
Module	Contents	Hours	Semester exam marks %	
Ι	Waste water treatment Modelling and Design of Activated sludge system, Advanced waste water treatment, Sludge treatment and disposal. Characteristics of domestic waste, municipal waste water treatment systems	9	25%	
II	Air pollution: .Air pollution control of stationary	5	12%	
	FIRST INTERNAL EXAM			
		5	13%	

	Noise pollution: effect of noise pollution on people, community noise-sources & criteria, noise control.				
Ш	Pollution control in industries: pollution control in petroleum refineries, fertilizer industries, pulp and paper industries, textile industries, rubber processing industries, chlor-alkali industries, tanning industries, breweries, dairy, phenol plants, electroplating and metal finishing industries and cement industries	10	25%		
SECOND INTERNAL EXAM					
IV	Solid waste and hazardous waste management: characteristics of solid waste, disposal methods, Resource conservation and recovery. Definitions and classification of hazardous waste, waste minimization and recycling, treatment techniques. Handling and management of hospital wastes. General guidelines of environmental impact assessment (EIA), environmental management systems (EMS) and environmental audit.	10	25%		
	END SEMESTER EXAM	1	1		

Course I	No	Course Name	L-T-P-	Year of
			Credits	Introduction
09CH61	36	TRANSPORT PHENOMENA	2-1-0-3	2015
Course () bjectives			
To deve	lop the a	bility to elaborate conceptual and mathematic	hematical mode	ls, from conservation
principles	s, to syste	ms involving simultaneous mass, momen	tum, and/or hea	t transfer processes as
well as re	actions or	other sources/sinks of transport for multi-	component mixtu	ires.
		1	1	
Syllabus				
Flux law	s shell h	alance equations- simplification and solu	tion to problem	s use of equations of
change to	solve flui	d flow problems comparison of laminar a	nd turbulent flox	s, use of equations of
flat plate	s internho	a now problems, comparison of laminar a use transport – friction factors energy eq	mation use of e	equations of change to
solvo boo	s, merpik t transfor i	archieves agustion of continuity for a mul	ti component mi	viture use of equations
of change	t transfer	mass transfer problems, simultaneous has	t component m	afor thermal diffusion
or change	to solve	mass transfer problems, simultaneous nea	at and mass tran	ister, mermar unrusion
and press	ure annusi	011.		
F				
Expected				
The stude	ents compl	eting this course will develop		
I. U	nderstandi	ng of the principles of transport of momen	tum, heat and ma	ass.
2. T	he ability t	o set up overall balances for conservation	of momentum, e	nergy and mass and
ap	ply flux la	aws in balances.		
3. T	he ability t	o obtain profiles for velocity, temperature	and concentratio	n from shell balance
ec	juations.			
4. T	he ability t	o reduce and solve appropriate equations of	of change to obta	in desired profiles for
Ve	elocity, ter	nperature and concentration.		
5. T	he ability t	o apply the principles of transport processe	es to practical sit	uations.
Text Boo	oks			
1. Bird R	.B, Stewar	t W.E & Lightfoot E.N, Transport Phenom	ena, John Wiley	Publishers.
2. Welty	J.R, Wicks	s C.E& Wilson.K.E., Fundementals of Mor	mentum, Heat an	d Mass Transfer, John
Wiley Pu	blishers.			
Reference	e Books			
1. Frank	M. White,	Viscous fluid flow, McGraw Hill Internati	onal	
2. C.O.B	ennett, J.E	. Myers, Momentum, Heat and Mass Trans	fer, McGraw Hi	11
		Course Plan		
Module		Contents	Hou	rs Semester exam
				marks %
Ι	Flux law	s, shell balance equations for momentum. I	neat and	
	mass tra	nsfer – simplification of equations in	various	
	coordinat	te systems to solve a few introductory pr	oblems-	
	flow of	a falling film, flow through a circular tu	be, heat 9	25%
	conductio	on through composite walls heat conducti	on with	2370
	a chami	al heat source diffusion through stagn	ant cas	
	film diff	usion with reaction	an zas	
т	Equation	of continuity motion substantial de	rivotivo	
II	Equation	of continuity, motion, substantial def	nvanve, 6	13%

	Navier – Stokes equation, Euler equation, use of equations of change to solve fluid flow problems- flow of falling film, steady flow in a long circular tube, shape of surface of a rotating liquid, operation of a couette viscometer.		
	FIRST INTERNAL EXAM		
	Comparisons of laminar and turbulent flows in circular tubes and flat plates, interphase transport- friction factors for flow in tubes	4	12%
III	Equation of energy, use of equations of change to solve steady state problems involving heat transfer- steady flow forced convection heat transfer in laminar flow in a circular tube, tangential flow in an annulus with viscous heat generation, steady flow in a non-isothermal film, transpiration cooling.	10	25%
	SECOND INTERNAL EXAM		
IV	Equation of continuity for a multi component mixture, diffusion, convection and chemical reaction, use of equations of change to solve problems involving mass transfer-simultaneous heat and mass transport, thermal diffusion and Clusius – Dickel column, pressure diffusion and ultracentrifuge	10	25%
	END SEMESTER EXAM		

Cours	e No	Course Name	L-T-P- Credits	Year of Introduction
09CH	6146	DOWNSTREAM PROCESSING	2-1-0-3	2015
Course (bjective	25	I	
In this co	urse the	students are introduced to different downstream	processing techn	iques and their
principle,	scale up	, design application and importance in product	separation and p	ourification
operation	s.			
Syllabus				
Overview	of down	nstream process technology, Product identificati	on techniques. M	lechanisms,
principle,	scale up	and design of thickener, precipitation units, filt	ration units, disti	llation column,
extraction	n column	, evaporator, crystallizer and driers.		
Expected	l Outcon	ne		
The stude	ents comp	pleting this course will develop		
• A	bility to	describe the principles and application of major	unit operations u	sed in downstream
pr	ocessing	; for example homogenization, centrifugation	and precipitation	n, chromatography
ar	nd memb	rane separation units.		
• A	bility to	analyze and perform basic scale-up calculated	ations for major	downstream unit
op	perations	such as sedimentation, filtration, extraction, ads	sorption etc	
• A	bility to	design various equipments like thickener, f	iltration units, d	istillation column.
ех	traction	column, evaporator, crystallizer and driers.		
Reference	e Books			
1. Juan A	. Asenjo	(Ed), Separation processes in biotechnology, C	RC	
2. Satinde	er Ahuja	(Ed), Handbook of Separations, Academic Pres	S	
3. Roger.	H. Harri	son et.al. Bioseparations Science and Engineer	ing, Oxford Univ	ersity press, 2004.
4. Paul. A	A. Belter,	E.L.Cussler, Wei-Shou Hu Bioseparations-Dov	wnstream process	sing for
Biotechno	ology,			
John Wil	ey and so	ons, 1988		
5. James.	E.Bailey	, David.F. Ollis Biochemical engineering fundation	mentals, McGrav	v Hill.1986
6. Syed T	anveer A	Ahmed Inamdar Biochemical engineering- Princ	ciples and concep	ts, Prentice Hall of
India.200	7			
7. Richar	dson J.F,	Harker J.H, Backhurst J.R, Coulson and Richa	rdson's Chemica	l Engineering-
Vol.2:				0 0
Particle t	echnolog	gy and separation processes, Butterworth Heine	mann. 2002	
8. Noora	labettu l	Krishna Prasad. Downstream process Technol	logy. PHI Learn	ing Pvt Ltd, New
Delhi. 20	10	L	00	C ,
		Course Plan		
Module		Contents	Hours	Semester exam
				marks %
T	Overvie	w of downstream process technology. Need	for	
-	downst	eam processing, criteria for choice of reco	verv	
	process	es. Cell disruption. Flocculation. Foam and bu	bble 2	25%
	fraction	ation- Principle, operation and applications		
	Gravity	sedimentation: Mechanisms of sedimentation	tion	
	Design	of industrial equipments for gravity settl	ling-	
	thicken	ers classifiers – applications in downstr	ream 2	
	mercin		vuili	

	Filtration: Equipments for conventional filtration- filter media, pre-treatment methods, general filtration theory- Darcy's law, compressible and incompressible filter cakes,	2	
	Product identification techniques – Electrophoresis, Thin layer chromatography, High performance liquid chromatography, gas chromatography.	1	
П	Distillation – Types of distillation – batch, continuous, industrial fractionation, extractive distillation, steam and vacuum distillation.	3	
	<i>Extractive separations</i> : General principles, analysis of batch and staged extraction - differential and fractional extraction-scale up and design of extractors - reciprocating plate extraction columns, centrifugal extractors- aqueous two phase extraction and supercritical fluid extraction – theoretical principles, process, equipment and applications.	4	15%
	FIRST INTERNAL EXAM		
	Advartian: Advartian equilibrium advarbant types		
	equipment operation- adsorption column dynamics- fixed bed and agitated bed adsorption, scale up of adsorption processes- LUB method	3	10%
III	Evaporation: Factors affecting evaporation, equipments – Number of effects, short tube, long tube, falling film evaporators.	2	
	<i>Precipitation</i> : Methods of precipitation, precipitate formation, Factors influencing protein solubility, design of precipitation systems	2	
	<i>Product crystallization</i> : Basic principles- nucleation and crystal growth - Mier's super saturation theory- kinetics of crystallization-analysis of dilution batch crystallization- commercial crystallizers- process crystallization of proteins, Recrystallization.	3	25%
	<i>Product drying</i> : Heat and mass transfer in drying- types of commercial dryers- vacuum dryers, freeze dryers, spray dryers- scale up and design of drying systems.	2	
	SECOND INTERNAL EXAM		
IV	<i>Chromatographic separations</i> : Classification of techniques, elution chromatography- retention theory, band broadening effects, separation efficiency, resolution, yield and purity, discrete stage analysis, kinetic analysis- Gas and liquid chromatography- Bonded phase chromatography, Ion exchange chromatography, gel permeation chromatography, affinity chromatography- supercritical fluid chromatography - Chiral chromatography- expanded bed chromatography- simulated countercurrent chromatography- process scale up.	6	25%

<i>Electrokinetic separations</i> : Electrophoresis – Principles and techniques.	1		
<i>Membrane separation processes</i> : Cross flow filtration – filter media- ultra filtration and microfiltration membranes, filter modules, modes of operation, concentration polarization and fouling.	3		
Equipments, principle and applications of reverse osmosis, dialysis, electrodialysis, pervaporation and perstraction.	1		
END SEMESTER EXAM			

Course	No Course Name	L-T-P- Credits	Year of Introduction
00/1461	66 MODERN METHODS OF	2-1-0-3	2015
090101	⁰⁰ INSTRUMENTATION AND ANALYSIS		2015
Course (Dbjectives		
To fami	liarize the basic concepts of various modem instrumentat	ion technique	es used in chemical
analysis			
Syllabus			
Working	principle, components, areas of application of different t	types of Chro	matography,
spectrosc	copy, thermal analysis, microscopy and X-ray technique	es.	
Expected	1 Outcome		
The stud	ents completing this course will develop		
• A	Equaintance with modern instrumentation and analysis technique	S - 1 1	4 -
• A	bility to describe the principles of analytical methods su	ch as chroma	tograpny,
s s	bility to use modern instrumentation and classical techniques, to dea	I I EIVI	s and to properly record the
• A	sults of their experiment	sign experiment	s, and to property record the
Referen	ce Books		
1. J. Mer	dham, J.D. Barnes, R.C. Denny& M.J.K.Tl1omas, Voge	l's Textbook	of Quantitative
Analysis			
2. Gurde	ep.R Chatwal ,Sham Anand ,Instrumental Methods of Ch	nemical Anal	ysis, Himalaya
Publishir	ıg.		
2 Habar	LI Williard Lowron I. Marritt Jahr A. Dan Frank A. Sattle	Ter at 1 years a set o	1 Mathada af
5. Hodar	CPS Dublishers & Distributors	,Instrumenta	I Wiethous of
Analysis	CDS Fublishers & Distributors.		
	Course Plan		
Module	Contents	Hou	rs Semester exam
			marks %
Ι	Introduction to chemometrics- classification	of 2	
	instrumental techniques.		
	Basic functions of instrumentation-factors affecting ch	noice 3	
	-		
	of analytical method- interferences- data handling		
1	of analytical method- interferences- data handling Introduction to scanning electron microscopy, trans	form 2	
	of analytical method- interferences- data handling Introduction to scanning electron microscopy, trans electron microscopy. Atomic force microscopy.	form 2	25%
	of analytical method- interferences- data handling Introduction to scanning electron microscopy, trans electron microscopy. Atomic force microscopy. Introduction to differential scanning calorimetry(D	form 2 SC), 3	25%

	thermogravimetric analysis (10/1) and differential thermal		
	analysis (DTA).		
II	Principles of chromatography.	1	
	Instrrmrentation of Gas liquid chromatography,-gas	4	
	chromatography column, liquid phases and colurrm		120/
	selection, detectors-thermal conductivity detectors, flame		12%
	ionization detectors, thermionic emission detector and		
	electron capture detector.		
	FIRST INTERNAL EXAM		
	HPLC instrumentation, mobile phase delivery system,		
	sample introduction, Separation columns - standard	5	13%
	column, narrow bore column, short fast column, guard		

	column and in-line filters, temperature control, detectors — UV visible photometers and spectrometers, electrochemical		
	detectors. High pressure liquid chromatography- applications		
III	General feature of spectroscopy, interaction of radiation with matter.	1	
	Instrumentation of IR&FTIR spectroscopy, sample handling, quantitative analysis	4	
	NMR spectroscopy,-basic principles, spectra and molecular structure, elucidation of NMR spectra, quantitative analysis.	3	25%
	Mass spectroscopy- instrumentation ionization methods, mass analysis, correlation of mass spectra with molecular structure.	2	
	SECOND INTERNAL EXAM	1	
IV	Introduction to XRD, production of X-ray and X-ray spectra. X-ray absorption methods	2	
	x-ray diffraction, and electron spectroscopy for chemical analysis	3	25%
	Surface area determination by BET method, particle size by light scattering method, zeta potential, colour etching spectrophotometer lavibond tintometer	4	
	END SEMESTER EXAM	1	

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6176	COMPUTATIONAL FLUID DYNAMICS	2-1-0-3	2015

To build expertise in detailed study of Computational Flow Modelling, Solution of model equations and application in reactive flows and multiphase flows.

Syllabus

Introduction to computational modeling, index notation of vectors and tensors, control volume, Reynold's transport theorem, governing equations, phenomenological models, numerical methods for CFD, PDE's, properties of numerical solutions, accuracy and error, application of numerical methods, detailed study of Navier – Stokes equation, implicit and explicit methods, turbulence modeling, reactive flows and combustion, multiphase flow, polymeric liquids, rheological models, circulation, Die swell, extensional flows, DEM-Lattice Boltzmann-Immersed Boundary-Boundary Elements.

Expected Outcome

After successfully completing this course, the student will be able to

1. Develop an understanding of the major theories, approaches and methodologies used in CFD

2. Apply knowledge of basic science and engineering fundamentals to solve practical problems

3. Numerically solve the governing equations for fluid flow.

4. Understand grid generation, assess stability and conduct a grid convergence assessment.

5. Understand and apply turbulence models to engineering fluid flow problems.

6. Assess the quality of numerical results.

7. Understand the issues in multiphase flow modeling.

Text Books

1. Anderson, John David, Computational Fluid Dynamics: The Basics with Applications, McGraw Hill, 1995.

2. Anderson, D. A;Tarmeheil, J. C; Pletcher, R. H., Computational Fluid Mechanics and Heat transfer, Hernispher, New York, 1984.

3. Ferziger, J . H and Peric, M., Computational methods for Fluid Mechanics, Springer, New York, 2002

4. Patankar, Suhas, V., Numerical Heat Transfer and Fluid Flow, McGraw Hill, Washington, 1980.

Reference Books

1. Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Claderon Press, Oxford.

2. Peyret, R., Taylor, T. D. Computational Methods for Fluid Flow, Springer Verlag, 1983.

3. Ranade, V., Computational Flow Modelling for Chemical Reaction Engineering, Academic Press, 2002.

4. Bird, R. B., Armstrong, R. C., Hassagar, O. Hassagar, Dynamics of Polymeric Liquids, John Wiley, New York, 1987.

5. Barnes, H. A.; Hutton, J. F. and K. Walters. An Introduction to Rheology Elsevier, 1993

6. Crowe, Clayton T. (Ed.) Multiphase flow handbook CRC Taylor 8: Francis, 2006

7. Bird, R. B; Stewart, W. E and Lightfoot, E. N, Transport Phenomena, John Wiley, New Delhi, 2002.

Course Plan			
Module	Contents	Hours	Semester exam marks %
Ι	Introduction to Computational Modeling of Flows - significance with special emphasis on chemical engineering applications. — Index notation of vectors and tensors-Control volume- Reynolds Transport Theorem- Governing equations— Non dimensional forms- Phenomenological models-boundary conditions- classification	9	25%
Π	Numerical methods for CFD-classification of PDE's-Basic discretisation methods- Mesh- solution, and convergence-iterative methods-Properties of numerical solutions-accuracy and errors.	5	13%
	FIRST INTERNAL EXAM		
	Application of numerical methods to selected model equations such as wave equations- heat equation .Laplaces equation-Burgers equation-First and Second order methods such as upwind, Lax Wendroff, MacCormack methods etc.	5	12%
III	Detailed study of Navier stokes equation-Solution of the Navier Stokes equations-Discretization of convective, viscous, pressure and body force terms-conservation properties-grid arrangement-colocated and staggerd- pressure equation and its solutions—implicit and explicit methods-implicit pressure correction methods-Fractional Step method-SIIVIPLE algorithm for a colocated Variable arrangement Turbulence Modelling -The Turbulence Problern—Algebraic and Differential Models, k- ϵ models, Other Models	10	25%
	SECOND INTERNAL EXAM		
IV	Reactive Flows and Combustion—Reactor Modelling (RTD Studies)-Polymerisation-Combustion Modelling— Multiphase Flow-Fluid/Fluid (bubbles/drops)-Fluid/Solid (fluidised beds, pneumatic conveying, settling) -Polymeric Liquids-Rheological models-Special cases: Circulation, Die- swell, Extensional flows-Brief Introduction to Other Approaches -CFD—DEM-Lattice Boltzmann-Immersed Boundary-Boundary Elements.	10	25%
	END SEMESTER EXAM		

Course N	No Course Name	L-T-P- Credits	Year of	
			Introduction	
09CH618	36 INDUSTRIAL POLLUTION CONTROL	2-1-0-3	2015	
Course C	Dbjectives:			
•	To impart the basic concepts of industrial pollution co To develop understanding about water, air, Soil pollu	ontrol ition control		
Syllabus:				
Water po Water po monitorin treatment	llution laws and standards - industrial wastewater ollution control in different Chemical industries, g equipment and method of analysis, Air pollution and disposal.	treatment, proces Air Pollution La control methods	asses and equipment. aws, Air pollutants in industries, sludge	
Expected	Outcome:			
1. 2. 3. 4. 5.	To understand the needs of environmental pollution Apply the Air, Water and Environmental (Protection) Act, Ha Handling) rules for prevention and control of pollution. Analyze the emission of pollutants from industries a Design proper control methods to prevent pollution Design Effluent Treatment plant based on effluent of	n control. azardous and Solid Wa and its health effec through air, water characteristics.	ste (Management & ts. and sand.	
Text Boo	ks:			
 Rao M Maha Mccai Peavy Rao C Geran Reference 	 Rao M.N. & Rao H,Air Pollution, Tata Mcgraw Hill Mahajan S.P., Pollution Control In Process Industries, Tata Mcgraw Hill Mccaff & Eddy , Waste Water Treatment Peavy , Environmental Engineering Rao C.S., Environmental Pollution Control Engineering, New Age Int. Pub. Gerard Kiely, Environmental Engineering, Mcgraw Hill 			
1. Nelso	n & Nemerow, Industrial Water Pollution-Origin, Ch	haracteristics And '	Treatment, Addison,	
2. Sincer India	ey Publishing Co. To A.P.& Sincero G.A., Environmental Engineering,	A Design Approa	ch, Prentice Hall Of	
 Babbi Abbas (India) 	tt H.E, Sewage & Sewage Treatment, John Wiley si S.A, & Ramasami E, Biotechnical Methods Of) Ltd.	Pollution Control	, Universities Press	
5. S C. Bhatia, Handbook of industrial pollution control vol-1 and 2.				
Course Plan				
Module	Contents	Hours	Semester exam marks %	
I	Classification of industrial wastewater Types of pollutants and their effects Monitoring and analysis Methods Water pollution laws and standards Industrial wastewater treatment - processes	1 1 2 1 2	25%	
	Industrial wastewater treatment -equipment.	2		

II	Water pollution control in industries		
	Pulp and paper, Textile processing	1	
	Tannery wastes, Dairy wastes	1	12%
	Cannery wastes, Brewery	1	1270
	Distillery, Meet Packing, Food Processing Wastes	1	
	Pharmaceutical wastes, Chlor - Alkali Industries	1	
	FIRST INTERNAL EXAM		
	Fertilizer Industry	1	13%
	Petrochemical Industry	1	
	Rubber Processing Industry, Starch Industries	1	
	Metal Industries, Nuclear Power Plant Wastes	1	
	Thermal Power Plant Wastes.	1	
III	Air pollution control in industries: source and classification	2	
	of industrial air pollutant		
	Monitoring equipment and method of analysis	1	
	Damages to health, vegetation and Materials	1	
	Air pollution laws and standards	1	
	Treatment method in specific industries - thermal power	2	
	plants - cement		25 %
	Fertilizers - Petroleum Refineries	1	
	Iron and steel - chlor-alkali	1	
	Pulp and paper.	1	
	SECOND INTERNAL EXAM		
IV	Industrial odour control - sources and solutions - odour		
	control by adsorption and wet scrubbing	2	
	Industrial noise control methods	Z	
	Sludge treatment and disposal	1	
	Industrial hazardous waste management, Waste	1	
	minimization.		
	Environmental Impact Assessment and risk assessment-	Z	25%
	Environmental Audit and Environmental management	2	
	system	$\frac{2}{2}$	
	Concept of common effluent treatment plants.	2	
	END SEMESTER EXAM		

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6196	ADVANCED CHEMICAL	2-1-0-3	2015
	ENGINEERING THERMODYNAMICS		
Course Ohio	· - 4 ¹		

The students completing this course will develop

- 1. The ability to apply energy and entropy balance to practical situations
- 2. In-depth understanding of phase and reaction equilibria.
- 3. A general approach for establishing the conditions for equilibrium and stability for complex systems
- 4. The capability of working with multi-phase pure materials and mixtures.
- 5. The skill to solve problems involving phase equilibrium of single and multi component systems
- 6. The ability to apply the knowledge of thermodynamics to design problems.

Syllabus

Basic concepts of thermodynamics, thermodynamic properties of fluids, properties of solutions, phase equilibria for single component and multi component systems, reaction equilibrium.

Expected Outcome

Students will be able to

- 1. Understand the importance and relevance of thermodynamics in life processes
- 2. Analyze various situations and apply the concepts of thermodynamics to problem solving.
- 3. Work with single and multiphase systems of pure materials and mixtures.
- 4. Apply the knowledge of thermodynamics to design problems.

Text Books

- 1. Smith J. M. & Van Ness H.V., Introduction to Chemical Engineering Thermodynamics, McGraw Hill
- 2. Narayanan K. V., A Textbook of Chemical Engineering Thermodynamics, Prentice-Hall of India

- 1. Kyle B.G., Chemical and Process Thermodynamics, Prentice-Hall of India
- 2. Y.V.C. Rao, Chemical Engineering Thermodynamics, Universities Press
- 3. Stanley I. Sandler. Chemical Engineering Thermodynamics, John Wiley & Sons
- 4. M. D. Koretsky. Engineering and Chemical Thermodynamics, John Wiley & sons.
- 5. Hougen A., Watson K.M. & Ragatz R.A., Chemical Process Principles Vol.2, Asia Pub.
- 6. K.V.Narayanan & B.Lakshmikutty. Stoichiometry and Process Calculations, Prentice Hall of India

Course Plan				
Module	Contents	Hours	Semester exam marks %	
Ι	Basic concepts – internal energy, enthalpy, entropy, work, ideal and real gas laws.	3	25%	
	Thermodynamic properties of pure fluids - Gibbs free energy, work function - Maxwell's equations - Clapeyron equation, Joule-Thomson coefficient - Gibbs - Helmholtz equation.	3		

	Fugacity and activity of pure fluids - effect of temperature and pressure on fugacity and activity.	3	
Π	Properties of solutions, partial molar properties, chemical potential, fugacity in solutions, Lewis-Randall rule	3	12.0/
	Henry's law, ideal solutions - Raoult's law, activity in solutions, Gibbs-Duhem equations, excess properties.	4	13 %
	FIRST INTERNAL EXAM	1	
	Phase equilibria in single component and multi component		
	systems, phase rule for non-reacting systems - Duhem's theorem	3	12 %
III	VLE in ideal solutions - non-ideal solutions - positive and negative deviation - azeotropes	3	
	VLE at low pressures - Wohl's equation - van Laar equation – Wilson equation - application of activity coefficient equations in equilibrium calculations - basic idea on NRTL, UNIQUAC and UNIFAC methods	2	
	Phase equilibrium - vapour-liquid equilibrium at high pressures, bubble point, dew point and flash calculations in multi component systems - computer programs for these calculations	2	25 %
	Consistency tests for equilibrium data, calculation of activity coefficients using Gibbs - Duhem equations	2	
	Vapour-liquid equilibrium in partially miscible and immiscible systems, phase diagrams - liquid-liquid equilibrium - binary and ternary equilibrium diagrams.	2	
	SECOND INTERNAL EXAM		
IV	Chemical reaction equilibria - criteria of chemical equilibrium - equilibrium constant, Feasibility of reaction, factors affecting equilibrium conversion	5	25%
	Phase-rule for reacting systems. Heterogeneous chemical reactions, combined chemical and phase equilibrium.	4	
	END SEMESTER EXAM		

Course No	Course Name	L-T-P-	Year of	
		Credits	Introduction	
09CH6162	MINIPROJECT	0-0-4-2	2015	
Course Obje	ectives			
•	To practice the steps involved for the selection, e	xecution, and rep	orting of the project.	
•	To train the students for group activities to accom	nplish an enginee	ring task.	
Stude	ent group consist of maximum of 2 members a	are required to c	choose a topic of their	
of cu	rent relevance having research aspects or shall	be hased on indu	strial visits At the end	
of the	e semester, the students should submit a report	rt duly authentic	ated by the respective	
guide	, to the head of the department.			
C C	· · · · ·			
Evaluation w	ill be conducted by a committee consisting of t	hree faculty men	nbers. The students are	
required to b	ring the report completed in all respects duly at	thenticated by th	e respective guide and	
head of the d	department, before the committee. Students ind	ividually will pre	esent their work before	
the committe	e. The committee will evaluate the students indi	vidually and man	ks shall be awarded as	
follows.				
Mini Project	will have internal marks100.			
	Attendance & Regularity :10	0+10 marks		
	Evaluation I : 3	0 marks		
	Evaluation II : 3	0 marks		
	Assessment by Guide : 2	0 marks		
Expected Or	utcomo			
At the end of the course the student will be able to				
1. Imple	ment the methods/techniques identified			
2. Analyse and interpret the results obtained.				
3. Prepa	re a report that includes information on a topic			

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH6172	DESIGN, SIMULATION AND INSTRUMENTAL - ANALYSIS LAB	0-0-2-1	2015

To provide the students with the fundamental knowledge of

- Programming and computation in MATLAB.
- Design of processes and equipments and their simulation using softwares.
- Measurement and analysis of process variables by using modern instruments.

Optimal design of the following.

1. Distillation column for binary mixture: plate & packed columns, Multi- component distillation. Absorption tower both plate as well as packed type.

2. Liquid —liquid extraction columns: mixer-settler, packed columns. Design of dryers: Rotary dryer, Tray dryer.

3. Multiple Effect Evaporators.

List of experiments in Instrumental Analysis Lab

- 1. UV-Visible spectrophotometer
- 2. Infrared spectrophotometer
- 3. Atomic absorption spectrophotometer.
- 4. Flame photometer
- 5. Thermo gravimetric analyzer
- 6. Differential scanning calorimeter
- 7. Differential thermal analyzer
- 8. Gas chromatograph.
- 9. High performance liquid chromatograph

Internal Continuous Assessment (MaximumMarks-100):

Regularity	:30marks
Record	:20marks
Tests, Viva	:50marks

Expected Outcome

At the end of the course the student will be able to

- 1. Solve complex chemical engineering problems by applying suitable numerical methods.
- 2. Design the process equipment using software.
- 3. Analyse different parameters using Modern instruments

THIRD SEMESTER

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH7117	PROCESS INTEGRATION	2-1-0-3	2015

Course Objectives

The students completing this course will develop

1. The ability to analyse heat exchanger networks

2. The ability to find out the energy requirement for a process using composite and grand composite curves

3. The ability to do Thermodynamic analysis (Pinch analysis), design and optimization of energy efficient industrial processes

4. The ability to modify processes for minimisation of raw material and waste generation

Syllabus

Introduction to Process Integration- Heat Exchanger Networking – Graphical representation of heat utilisation-Reactor Integration - . Reactor configurations: Temperature Control, Gas-Liquid and Liquid-Liquid Reactors- Distillation Integration- various configurations for heat integration of distillation column.- Mass Exchanger Network Synthesis

Expected Outcome

The students completing this course will develop the skills

- 1. To design heat exchanger with minimum external heating/cooling with fewest number of units and lowest possible total area in the heat exchanger
- 2. To suggest energy optimal integration solutions for distillation columns, evaporators heat and power systems
- 3. To do mathematical optimization within process design

Text Books

1. Chemical Process Design and Integration Robin Smith, John Wiley and Sons. Ltd., New Delhi,

2005.

Reference Books

1. Product 8: Process Design Principles Warren D. Seider, J. D. Seader and Daniel R. Lewin, Wiley Publication. 3. Heat Exchanger Network Synthesis U. V. Shenoy, Gulf Publication

Course Plan			
Module	Contents	Hours	Semester exam
			marks %
Ι	Introduction to Process Integration- Importance of Process		
	Integration and applications in Chemical Industries.		
	Overview of Process Integration. Heat Exchanger		
	Networking-Hot Composite Curve, Cold Composite	0	250/
	Curve, Problem Table Algorithm, Grand Composite Curve,	9	23%
	Area Targeting by Uniform Bath formula and Unit		
	Targeting by Eulers' formula, Heuristics for Pinch Design,		
	Maximum Energy Recovery Design, Evolution of		

	Network.		
II	Reactor Integration-Choice of Idealized reactor model and reactor performance. Reactor configurations: Temperature Control, Gas-Liquid and Liquid-Liquid Reactors, Choice of Reactors	5	13%
	FIRST INTERNAL EXAM		
	Heat Integration characteristics of reactors, Appropriate placements of reactors. Use of GCC for Heat Integration of reactors.	5	12%
Ш	Distillation Integration-Distillation sequencing, Heat Integration characteristics of Distillation column, appropriate placement of distillation column, various configurations for heat integration of distillation column.	10	25%
	SECOND INTERNAL EXAM		
IV	Mass Exchanger Network Synthresis-Mass Exchanger Network, Minimum Mass Separating Agents (MSA), Mass exchange networks for minimum external MSA. Minimum Number of Mass Exchangers.	10	25%
	END SEMESTER EXAM		

	NO COURSE NAME L-	T-P-	Year of Introduction			
00CH71	27 NON-CONVENTIONAL ENERCY 2		2015			
09011/1	27 NON-CONVENTIONAL ENERGY 2-	1-0-3	2013			
Syllobus	SOURCES					
Non co	Non-conventional energy sources Nuclear Energy Solar Energy Utilisation (Thermal) Energy					
from Oce	from Ocean Wind Tides and geothermal sources. Energy from biomass					
Fynoctod	An, which Thes and geothermal sources, Energy from bion	uss				
Understa	nd of nuclear energy and nuclear fission principles					
Understa	Inderstand solar Energy sources					
Understa	nd wind Energy conversion systems					
Understa	ad anargy from biomass biomass utilization					
Tort Dog						
1 Goldn	MKS Shara I. Jahansson, Daddy A.K.N. & Williams D.H. Enarg	u for a				
1. Ooluli Sustainah	loerg J., Johansson, Reddy A.K.N. & Williams K.H., Energ	y 101 a				
2 Doncol	NE, WORL, JOHN WHEY NE Klaaman M. & Malias M. Danawahla Enargy Source	a & Conv	arcian Tash			
2. Dalisal Tata Mc(Traw Hill					
3 Sukhat	me S.P. Solar Energy Tata McGraw Hill					
4 Mittal	K M Non-Conventional Energy Systems Wheeler Pub					
5 Pandex	G N A Text Book on Energy Systems, Wheeler Fus.	kas Pub				
6 Rai G	D Non-Conventional Energy Sources Khanna Pub	Rus I uo.				
Referenc	e Books					
1. Venka	aswarlu D., Chemical Technology, I. S. Chand					
2. Rao S.	& Parulekar B.B., Energy Technology, Khanna Pub.					
	Course Plan					
Modulo	Contonts	TT	a t			
wiouuie	Contents	Hour	s Semester exam			
wiouule	Contents	Hour	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of	Hour	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR,	Hour	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula,	Hour	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication	Hour 9	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast	Hour 9	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio.	Hour 9	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal.	9	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and	9	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat	9	s Semester exam marks %			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection,	9 5	s Semester exam marks %			
Ι	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt	9 5	s Semester exam marks % 25%			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss	9 5	s Semester exam marks % 25%			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss equation.	9 5	s Semester exam marks % 25%			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss equation.	9 5	s Semester exam marks % 25% 13%			
Ι	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss equation. FIRST INTERNAL EXAM Solar concentrating collectors : CPC, PTC, spherical	9 5	s Semester exam marks % 25% 13%			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss equation. FIRST INTERNAL EXAM Solar concentrating collectors : CPC, PTC, spherical parabolic aids , modes of tracking, performance analysis.	9 5	s Semester exam marks % 25%			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss equation. FIRST INTERNAL EXAM Solar concentrating collectors : CPC, PTC, spherical parabolic aids , modes of tracking, performance analysis. Salt gradient solar ponds: construction, operation, technica	Hour 9 5 1 5	s Semester exam marks % 25% 13%			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss equation. FIRST INTERNAL EXAM Solar concentrating collectors : CPC, PTC, spherical parabolic aids , modes of tracking, performance analysis. Salt gradient solar ponds: construction, operation, technica problems.	Hour 9 5 1 5	s Semester exam marks % 25% 13%			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss equation. FIRST INTERNAL EXAM Solar concentrating collectors : CPC, PTC, spherical parabolic aids , modes of tracking, performance analysis. Salt gradient solar ponds: construction, operation, technica problems. Solar drying and dehumidification: Solar cabinet dryers, convertive drucer	Hour 9 5 1 5	s Semester exam marks % 25% 13% 12%			
I	Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal. Solar Energy Utilisation (Thermal): Construction and performance analysis of solar flat plate collectors. Heat losses from FPC by radiation and natural convection, overall heat loss coefficient, collector efficiency factor, tilt factors, collector heat removal factor, Hottel-Willier- Bliss equation. FIRST INTERNAL EXAM Solar concentrating collectors : CPC, PTC, spherical parabolic aids , modes of tracking, performance analysis. Salt gradient solar ponds: construction, operation, technica problems. Solar drying and dehumidification: Solar cabinet dryers, convective dryers.	Hour 9 5 1 5	s Semester exam marks % 25% 13% 12%			

	cycle), operation and technical problems, environmental			
	impact. Tidal power, salinity power plants.			
	Wind energy: Design and analysis of wind turbines.			
	Geothermal systems : Hot water and dry steam systems,			
	energy extraction principles.			
	SECOND INTERNAL EXAM			
IV	Energy from biomass: Biomass utilisation : pyrolysis,			
	gasification, anaerobic digestion (biogas production).			
	Biodiesels : Manufacture and characteristics.	10	250/	
	Gasohol : Characteristics and manufacture , use of	10	23%	
	pervaporation technology. Synthetic liquid fuels from coal:			
	F — T Process, Coal hydrogenation, MTOG process.			
	END SEMESTER EXAM			

10	Course Name	L-T-P- Credits	Year of			
			Introduction			
37	ADVANCED BIOPROCESS	2-1-0-3	2015			
ENGINEERING						
Course Objectives To familiarize the students with various advanced theories in bioprocess engineering and kinetic parameters.						
Syllabus Introduction to fermentation process, Stoichiometry of microbial growth and product formation, Classification of microbial products, Material balance and energy balance of bioprocesses, Mass transfer in bioprocessing systems, Scale up and scale down of bioprocess systems, Design of novel bioreactors						
l Ou	itcome					
se w	ill enable the student to:					
ld m	athematical models of microbial growth and prod	uct formation				
ign	a biological product and the desired bioprocess					
ect o	r design appropriate bioreactor model based on th	e bioproduct and 1	nicrobial strain			
velop	suitable bioproduct separation techniques					
ign j	proper bioprocess waste treatment methods					
 Text Books M.L. Shuler and F. Kargi, "Bioprocess engineering", 2nd Edition, Prentice Hall of India, New Delhi. 2002. J. E. Bailey and D.F. Ollis, "Biochemical Engineering Fundamentals", 2nd Ed., McGraw-Hill Publishing Co. New York. 1986. P. Stanbury, A. Whitakar and S. J. Hall, "Principles of Fermentation Technology" 2nd Ed., Elsevier-Pergamon Press, 1999. Reference Books Karl Schugerl, Bioreaction Engineering (Volume 1), John Wiley, 1987. Pauline Doran, Bioprocess Engineering Calculation, Academic Press, 1995. 						
	Course Plan					
	Contents	Hours	Semester exam marks %			
Intr of ana ind - ez Sto	roduction: Fermentation processes, General require fermentation processes, An overview of aerob nerobic fermentation processes and their applica ustry, Medium requirements for fermentation pro- xamples of simple and complex media.	ements bic and tion in presses 9 ation: ratory	25%			
	37 37 Dbje arize rs. ion t ation n bic rs 1 Ou se w ld m sign ation se w ld m sign ation se w ld m sign to to to to to to to to to to	37 ADVANCED BIOPROCESS ENGINEERING Dbjectives arize the students with various advanced theories in birs. ion to fermentation process, Stoichiometry of microbia ation of microbial products, Material balance and ener n bioprocessing systems, Scale up and scale down of the student of the student to: Id Outcome see will enable the student to: Id mathematical models of microbial growth and products and biological product and the desired bioprocess ect or design appropriate bioreactor model based on the velop suitable bioproduct separation techniques Sign proper bioprocess waste treatment methods Sks Shuler and F. Kargi, "Bioprocess engineering", 2nd . 2002. Bailey and D.F. Ollis, "Biochemical Engineering F shing Co. New York. 1986. anbury, A. Whitakar and S. J. Hall, "Principles of ier-Pergamon Press, 1999. ze Books arl Schugerl, Bioreaction Engineering (Volume 1), Joi auline Doran, Bioprocess Engineering Calculation, Ac Course Plan Course Plan Course of aerobic fermentation processes, An overview of aerobic anaerobic fermentation processes, An overview of aerobic anaerobic fermentation processes and their applica industry, Medium requirements for fermentation processes, Respi	37 ADVANCED BIOPROCESS ENGINEERING 2-1-0-3 20bjectives arize the students with various advanced theories in bioprocess engineer rs. 2-1-0-3 ion to fermentation process, Stoichiometry of microbial growth and prod ation of microbial products, Material balance and energy balance of biop n bioprocessing systems, Scale up and scale down of bioprocess systems rs I Outcome se will enable the student to: Id mathematical models of microbial growth and product formation sign a biological product and the desired bioprocess ect or design appropriate bioreactor model based on the bioproduct and r velop suitable bioproduct separation techniques sing proper bioprocess waste treatment methods bks Shuler and F. Kargi, "Bioprocess engineering", 2nd Edition, Prentice . 2002. Bailey and D.F. Ollis, "Biochemical Engineering Fundamentals", 2nd shing Co. New York, 1986. anbury, A. Whitakar and S. J. Hall, "Principles of Fermentation Te- ier-Pergamon Press, 1999. Course Plan Course Plan Introduction: Fermentation processes, An overview of aerobic and anaerobic fermentation processes and their application in industry, Medium requirements for fermentation processes - examples of simple and complex media. Stoichiometry of microbial growth and product formation: Growth stoichiometry and elemental balances, Respiratory			

	quotient, Degree of reduction, Yield and maintenance coefficients, Oxygen consumption in aerobic microbial cultures, Theoretical Oxygen demand- problems.			
П	Classification of microbial products - Growth associated, Non-growth associated and Mixed growth associated product formation. Material balance and energy balance: Material balance for industrial fermentation, Downstream processing and waste treatment processes- problems.	5	13%	
	FIRST INTERNAL EXAM			
	Energy balance for fermentation and downstream processing, Thermodynamics of microbial growth, Heat generation in microbial cultures-problems	5	12%	
Ш	Mass transfer in bioprocessing systems: Oxygen transfer mechanism, Assessment of K_La - chemical method, dynamic differential gassing out method, dynamic integral gassing out method, oxygen balance method, enzymatic method- merits and demerits of each method. Scale up and scale down of bioprocess systems: Need for scale up and scale down, Operating boundaries for aerated and agitated fermenters, Scale up criteria for microbial cell processes- constant power input per unit volume, constant K_La , constant mixing quality, constant momentum factor, constant impeller tip speed, constant mixing rate number, Scale down procedure	10	25%	
	SECOND INTERNAL EXAM			
IV	Design of novel bioreactors- Packed bed bioreactors, Bubble-column bioreactors, Fluidized bed bioreactors, Trickle bed bioreactors, Airlift loop bioreactors, Photobioreactors. Thermal death kinetics of cells and spores: Survival curve, Decimal reduction factor, Extinction probability, Sterilization of culture medium, Batch and continuous sterilization- design aspects, Air sterilization, Design of fibrous type filters.	10	25%	
END SEMESTER EXAM				

Course	No Course Name	L-T-P- Credits	Year of Introduction
09CH7	147 MATHEMATICAL METHODS IN CHEMICAL ENGINEERING	2-1-0-3	2015
Course C The stude 1. To 2. Fo 3. A 4. A Syllabus Mathema equations	Objectives ents completing this course will be able to o solve problems of algebraic, differential, simultaneous prmulate mathematical model using single and multiva- olutions to practical problem pply pure mathematics content to problems related to p ssess reasonableness of solutions and select appropriate tical formulation of the physical problems- Analytical s encountered in chemical engineering problems- The d	as and partial dif riable calculus to practical Chemic e levels of solution solution of ordini	ferential equations to enable engineering cal Engineering on sophistication ary differential or- Application of
Expected The stude original p Text Boo 1. Je Pr 2. S. Reference 1.	 I Outcome ents completing this course will be able to evaluate a mather. oks enson, V.J. and Jeffereys, G.V., Mathematical Methods ress, London and New York, 1977. Pushpavanam, Mathematical Methods in Chemical Eng the Books Mickley, H.S., Thomas. K. Sherwood and Road, C.E. Engineering. Tata McGraw-Hill Publications, 1957. 	athematical solu in Chemical Er gineering, PHI. E., Applied Matl	tion in terms of the ngineering, Academic nematics in Chemical
	Course Plan		
Module	Contents	Hours	Semester exam marks %
Ī	Mathematical formulation of the physical proble application of the law of conservation of mass accumulation in stirred tank, starting equilibrium solvent extraction in two stages, diffusion with che reaction, application of the law of conservation of er radial heat transfer through cylindrical conductors, he a closed kettle, flow of heat from a fin.	ms - , salt still, mical hergy, eating	25%
П	Analytical (explicit) solution of ordinary differ equations encountered in chemical engineering pro- first order differential equations, method of separati- variables,	ential blems on of 3	8%
	FIRST INTERNAL EXAM		
	Equations solved by integration factors Example involving mass and energy balances and reaction kir	mples	170/

second order differential equations, non-linear equations, linear equations, simultaneous diffusions and chemical 7

17%

III	reaction in a tubular reactor. Formulation of partial differential equations, unsteady state heat conduction in one dimension, mass transfer with axial symmetry. The difference operator, properties of the difference operator, difference tables and other difference operators, linear finite difference equations, the complimentary solution of the particular solution, simultaneous linear		
	differential equations, non-linear finite difference equations, analytical solution. Solution of the following type of problems by finite difference method - calculation of the number of plates required for absorption column, calculation of the number of theoretical plates required for distillation column, number of steps required for a counter- current extraction and leaching operations.	10	25%
	SECOND INTERNAL EXAM	1	
IV	Application of statistical methods - propagation of errors of experimental data, parameter estimation of algebraic equations encountered in heat and mass transfer, kinetics and thermodynamics by: the method of averages, linear least squares and weighted line	10	25%
	END SEMESTER EXAM		

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH7167	ADVANCED PROCESS CONTROL	2-1-0-3	2015

The students completing this course will learn

- 1. The concepts of linear feedback control theory
- 2. Recent developments in control theory
- 3. Selection and applicability of different modes of controllers
- 4. To analyze the stability of systems and design controllers for robustness
- 5. Digital control
- 6. To simulate control systems using software

Syllabus

Basics of linear open loop and closed loop systems, different modes of controllers, performance criteria, stability analysis, advanced control strategies, sampled data control systems.

Text Books

- 1. D.R. Coughanour 'Process Systems analysis and Control', , McGraw-Hill, 2"' Edition, 1991.
- 2. Stephanopoulous, 'Chemical Process Control Theory and Practice', Prentice Hall of India Ltd., 1984
- 3. E. Seborg, T.F. Edger, and D.A. Millichamp 'Process Dynamics and Control', John Wiley and Sons, 2nd Edition, 2004.

- 1. C.A. Smith and A.B. Corripio. 'Principle and Practice of Automatic Process Control', 3" ed., John Wiley and Sons, 2005.
- 2. W.L .Luyben 'Process Modelling Simulation and Control for ChemicalEngineers,McGraw Hill, 2nd Edition,1990.
- 3. Ogunnaike B. A. and Ray W. H., "Process Dynamics Modeling and Control", Oxford University Press
- 4. Bequette B. W., "Process Control Modeling, Design and Simulation", Prentice-Hall of India.

Course Plan			
Module	Contents	Hours	Semester exam marks %
Ι	Introduction to linear open and closed loop	2	
	Different modes of controllers- P, PI, PID.	2	
	Performance criteria of controllers — the error performance indexes	2	25%
	Systems Control valves — characteristics, sizing and valve positioners.	2	
	Introduction to PLC, SCADA, DCS systems	2	

II	Stability Analysis: Frequency response analysis, Bode	3	
	plots		12 %
	Nyquist plots	1	
	FIRST INTERNAL EXAM		
	Process identification.	1	
	Controller tuning - Zigler-Nichols and Cohen-Coon tuning	3	13.0%
	methods		15 70
	Relay tuning.	1	
III	Special Control Techniques: Advanced control techniques,	3	
	cascade, ratio, feed forward controls		
	Aadaptive control, selective controls	2	25.04
	Computing relays, simple alarms	1	23 70
	Smith predictor	1	
	Internal model control.	3	
	SECOND INTERNAL EXAM		
IV	Sample Data Controllers: Basic review of Z transforms	3	
	Response of discrete systems to various inputs. Open and	4	
	closed loop response to step, impulse inputs,		25%
	Closed loop response of discrete systems.	3	
	END SEMESTER EXAM		

Course N	No Course Name L- Cr	T-P- edits	Year of Introduction			
09CH71	77 NANOMATERIALS AND 2- NANOTECHNOLOGY	1-0-3	2015			
Course (Course Objectives					
The students completing this course will develop						
1. U	1. Understanding on nanotechnology and different types of nanomaterials.					
2. K	nowledge of synthesis and characterization of various nano	materials suc	ch as nanoparticles,			
nan	ocomposites, etc.					
3. F	amiliarity with the sophisticated analytical tools used for in	aging, chara	cterization and			
mar	inpulation of nanomaterials.					
Seillahua						
Synabus Introduct	ion to panotochnology. Synthesis and characterization of	nonomotorio	la Nanocompositos			
and smar	materials Nanomanipulation	nanomateria	is. Nanocomposites			
Expected						
Students	should get familiarized with aspects of nanotechnology, th	eir applicatio	ons and the ongoing			
research	n this area.	appirearie				
	Course Plan					
Module	Contents	Hours	Semester exam			
			marks %			
Ι	Introduction to nanotechnology, nanoscale	·,				
	electromagnetic spectrum, top down and bottom u	2				
	approach, particle size, chemistry and physics of	f 9	25%			
	nanomaterials, electronic phenomenon in nanostructures	,				
	optical absorption in solids, quantum effects.					
II	Nanomaterials, preparation of nanomaterials like gold	,				
	silver, different types of nano-oxides, A1203, TiO2, ZnO	5	13%			
	etc. Sol-gel methods, cherrrical vapour deposition, ba	1				
	milling etc.					
	FIRST INTERNAL EAAW					
	like field emission displays Different types of	s f 5	12%			
	characterization techniques like SFM AFM TEM & STM		12/0			
Ш	Nanocomposites nanofillers high performance materials	•				
	polymer nanocomposites, nanoclays, nanowires	,	2.5%			
	nanotubes, nanoclusters etc. Smart materials, self assembl	y 10	25%			
	of materials, safety issues with nanoscale powders.					
	SECOND INTERNAL EXAM					
IV	Nanomanipulation, Micro and nanofabrication techniques	,				
	Photolithography, E-beam, FIB etc. Nanolithography	,				
	softlithography, photoresist materials. Introduction t	D 10	25%			
	MEMS, NEMS and nanoelectronics. Introduction t		2370			
	bionanotechnology and nanomedicines.					
END SEMESTER EXAM						

Course N	No Course Name	L-T-P- Credite	Year of			
09CH71	87 SEPARATION PROCESSES	2-1-0-3	2015			
0,011,1		2105	2015			
Course Objectives The students are familiarized with the concepts of advanced separation processes like Membrane separation processes, diffusional separation process, multicomponent absorption, azeotropic and extractive distillation.						
Syllabus Fundame separation processes	ntals of Separation Processes; basic definitions of releases processes; fundamentals and various terms; classific ; gaseous diffusion, mechanism, process description,	evant terms. Mer cations. Diffusion design considera	nbrane based nal separation ations, basic			
Expected	l Outcome	pie distillation, e				
 Knowle Ability Ability Ability Ability 	dge of various chemical engineering separation proce to select appropriate separation technique for intended to analyze the separation system for multi-component ity to design separation system for the effective solut	esses d problem t mixtures ion of intended p	problem			
1. Seader 2. Shoen 3. Loeb. S 4. Winkle 5. Sherwo 6. McCab Referenc 1. Perry. 2. 2. Rousse	 Text Books Seader, Henly, Separation process principles, John Wiley Shoen K.M, New chemical engineering separation techniques, Inter Science (1962). Loeb. S, Industrial membrane separation processes. Winkle M.W, Distillation, McGraw Hill. Sherwood T.K, R.L Pigford and C.R Wilke, Mass transfer, McGraw Hill McCabe W.L, J.C .Smith and P. Harriot, Unit operations in chemical engineering, McGraw Hill. Reference Books Perry. J.H and C.E. Chilto, Chemical engineer's handbook, McGraw Hill Rousseau R.W, Handbook of separation process technology, John Wiley (1987). 					
	Course Plan		a t			
Module	Contents	Hour	s Semester exam			
Ι	Membrane separation processes — fundamentals, mechanism and equilibrium relationships, types and structure of membranes, membrane permeation of li- and gases, effects of concentration, pressure and temperature, dialysis: mechanism, basic idea on dial design, industrial application, reverse osmosis, defin- and theory, design considerations, applications, ultra- filtration.	quids yser litions	25%			
II	Diffusional separation processes — gaseous diffusion mechanism, process description, design consideration basic principles.	on, ons, 5	13%			
	FIRST INTERNAL EXAM					
	Diffusional separation processes- application, equip	ment 4	12%			

	for thermal diffusion and pressure diffusion.		
III	Azeotropic and extractive fractional distillation —		
	separation of homogeneous azeotropes, separation of		
	heterogeneous azeotropes, quantitative treatment of		
	separation of binary heterogeneous azeotropes, selection of		250/
	addition agents, selectivity, factors affecting selectivity,	10	25%
	methods for prediction, mechanism of relative volatility		
	change, choice of entrainer or solvent, design of an		
	azeotropic distillation process, design of an extractive		
	distillation process, methods of solvent recovery.		
	SECOND INTERNAL EXAM		
IV	Absorption of gases — non isothermal operation, adiabatic		
	absorption and stripping in packed columns,		
	multicomponent absorption, graphical and algebraic	10	25%
	method for multistage operation, multicomponent mass		
	transfer effects in the design of packed columns.		
	END SEMESTER EXAM		

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH7197	POLYMER COMPOSITES	2-1-0-3	2015

Syllabus

Introduction to composite materials, Manufacturing of advanced composites, Theory of reinforcement, Testing of composites

Expected Outcome

- Be familiar with a range of composite types, their production and commercial applications of composites.
- Understand mechanical behaviour of composites and the theoretical background.
- Understand the underlying principals of polymer structure-properties relationships.
- Understand design principles for the manufacture of polymer-based products.
- Understand testing of composite material and quality control methods

Text Books

1. Polymer Engineering Composites. Ed.M.O.W. Richardson, Applied Science Publishers, London.

- 2. Composite Materials K.K.Chawla
- 3. An Introduction to Composite Materials, D. Hull, Cambridge University Press, Cambridge.

Reference Books

1. Handbook of composites- G.Lubin, Von Nostrand, New York, 1982.

2. Mohr.J.G.et al, SPI handbook of Technology and Engineering of reinforced Plastics/Composites, Von Nostrand, New York.

3. Katz.H.S. & J.V. Milewski, Handbook of Fillers and Reinforcement for plastics- Von Nostrand, New York.

Course Plan			
Module	Contents	Hours	Semester exam marks %
Ι	Introduction to composite materials-definitions - classification based on structure- types of composite materials-plastics matrix composites-rubber matrix composites-metal matrix composites-ceramic and other brittle matrix composites. Characteristic features and advantages of composites materials- reinforcement and matrix materials and their properties. FRP - Reinforcement fibre- Glass, carbon, Kevlar, boron, asbestos, steel, natural fibre and whiskers, surface treatment for fibre-size and coupling agents. Commonly used fibre and additives in FRP and their effects-various types of resins used – polyester resins-epoxy and phenol formaldehyde resins.	9	25%

Π	Manufacturing of advanced composites: Polymer matrix composites: Preparation of Moulding compounds and prepregs – hand lay up method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding- vacuum bag moulding centrifugal casting-pultrusion-machinery, operation, advantages and disadvantages -	5	13%	
	FIRST INTERNAL EXAM			
	Fibre Reinforced Thermoplastics(FRTP) preparation-brief description of coating process melt compounding process and dry blending process-injection moulding, rotational moulding and cold forming of reinforced thermoplastics.	5	12%	
Ш	Theory of reinforcement – selection of matrix and reinforcement-mechanics of composite materials- micromechanics and macro mechanics, mechanism of load transfer-minimum and critical fibre content-critical fibre length-law of mixture rule-unidirectional and fibrous composites-effects of fibre orientation on stiffness and strength-bidirectional and random fibre composites- concepts of unit cell-stress analysis of unit cells-toughness of fibrous composites, microscopic stress-strain curves.	10	25%	
	SECOND INTERNAL EXAM			
IV	Testing of composites materials and products for quality control- Brief outlines of testing of glass fibre, testing of resins-testing of products. General design considerations- design values factor of safety-working stress approach – service ability design-warning of danger-design process- shape design & selection of materials and processing methods-application of composite of materials in various fields-chemical industries- electrical and electronic industries- aerospace, marine, and transport applications- application in buildings.	10	25%	
	END SEMESTER EXAM			

Course No	Course Name	L-T-P-	Year of
		Credits	Introduction
09CH7163	SEMINAR	0-0-2-2	2015

To assess the debating capability of the student to present a technical topic. Also to impart training to a student to face audience and present his/her ideas and thus creating self esteem and courage that are essential for an engineer.

Individual students are required to choose a topic of their interest from process design/design related topics preferably from outside the M.Tech syllabus and give a seminar on that topic about 45 minutes. A committee consisting of at least three faculty members shall assess the presentation of the seminar and award marks to the students based on merits of topic of presentation. Each student shall submit two copies of a write up of the seminar topic. One copy shall be returned to the student after duly certifying it by the chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation.

Internal Continuous Assessment (Maximum Marks-100)

Total marks	: 100 marks
Report	: 30 marks
Presentation	: 40 marks
Concept / Knowledge in the topic	: 20 marks
Relevance + Literature	: 10 marks

Expected Outcome

At the end of the course the student will be able to

- 3. Communicate with group of people on different topics
- 4. Prepare a Seminar report that includes consolidated information on a topic

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH7183	PROJECT (PHASE - I)	0-0-12-6	2015

To improve the professional competency and research aptitude by touching the areas which otherwise not covered by theory or laboratory classes. The project work aims to develop the work practice in students to apply theoretical and practical tools/techniques to solve real life problems related to industry and current research.

The project work can be a design project which contains design of part of the plant] experimental project and or computer simulation project on chemical engineering or any of the topics related with chemical engineering stream. The project work is allotted individually on different topics. The students shall be encouraged to do their project work in the parent institute itself. If it is found essential, they may be permitted to continue their project outside the parent institute subject to the conditions in clause 10 of M.Tech regulations. Department will constitute an Evaluation Committee to review the project work. The Evaluation committee consists of at least three faculty members of which internal guide and another expert in the specified area of the project shall be two essential members.

The student is required to undertake the project phase-I during the third semester. Phase-I consists of preliminary thesis work, two reviews of the work and the submission of preliminary report. First review would highlight the topic, objectives, methodology and expected results.

Supervisor Committee **Total** : 20 marks : 30 marks :50marks

Expected Outcome

At the end of the course the student will be able to

- 1. Implement the methods/techniques identified
- 2. Analyse and interpret the results obtained.
- 3. Compare the result obtained with literature
- 4. Demonstrate the original contribution to knowledge

FOURTH SEMESTER

Course No	Course Name	L-T-P- Credits	Year of Introduction
09CH7184	PROJECT (PHASE - II)	0-0-21-12	2015
Course Obje To impro otherwise practice i related to	ctives ve the professional competency and rese not covered by theory or laboratory clas n students to apply theoretical and practi industry and current research.	arch aptitude by touching sses. The project work air ical tools/techniques to so	the areas which ns to develop the work lve real life problems
The third ser progress of t semester.	nester project is continued in the 4 th sen he work, preliminary report and scope of	nester (Phase—II). Secon of the work which is to b	nd review evaluates the pe completed in the 4 th
	Supervisor	: 30 marks	
	External	: 30 marks	
	Committee	: 40 marks	
	Total	: 100 marks	
Expected Ou At the end of 1. Imp 2. Ana 3. Cor 4. Der	Itcome the course the student will be able to lement the methods/techniques identifie lyse and interpret the results obtained. npare the result obtained with literature nonstrate the original contribution to know	d owledge	